A central limit theorem for additive random functions
Teoriâ veroâtnostej i ee primeneniâ, Tome 21 (1976) no. 4, pp. 707-717 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $F(U)$ be an additive real-valued random function defined on bounded Borel subsets $U\subset R^n$ ($U'\bigcap U''=\varnothing$ implies $F(U'\bigcup U'')=F(U')+F(U'')$ with finite variance $\sigma^2(U)$ and $\mathbf MF(U)=0$. Four types of conditions: А), Б), В) and Г) are studied which guarantee that $$ \lim_{k\to\infty}\mathbf P\biggl(\frac{F(U_k)}{\sigma(U_k)}<a\biggr)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^a e^{-x^2/2}dx; $$ A) imposes restrictions on the growth of $\sigma^2(U)$ relative to $|U|$, Б) estimates the absolute moments $C_{2+\delta}(U)=\mathbf M|F(U)|^{2+\delta}$, $\delta>0$, B) contains various conditions of almost-independence of $F(U')$ and $F(U'')$ if $U'$ and $U''$ are located far from each other, Г) specifies the meaning of $U_k\to\infty$. Combinations of such conditions are specified in different theorems. Theorem 1 generalizes the corresponding result of Yu. A. Rozanov [2] even in the case $n=1$ under a milder condition ${\rm B}_1$) . The method of the proof can be traced up to S. N. Bernstein's paper [1]. The results are immediately generalized for functions $F(U)$ on lattice spaces.
@article{TVP_1976_21_4_a1,
     author = {A. V. Bulinskiǐ and I. G. \v{Z}urbenko},
     title = {A central limit theorem for additive random functions},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {707--717},
     year = {1976},
     volume = {21},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1976_21_4_a1/}
}
TY  - JOUR
AU  - A. V. Bulinskiǐ
AU  - I. G. Žurbenko
TI  - A central limit theorem for additive random functions
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1976
SP  - 707
EP  - 717
VL  - 21
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_1976_21_4_a1/
LA  - ru
ID  - TVP_1976_21_4_a1
ER  - 
%0 Journal Article
%A A. V. Bulinskiǐ
%A I. G. Žurbenko
%T A central limit theorem for additive random functions
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1976
%P 707-717
%V 21
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_1976_21_4_a1/
%G ru
%F TVP_1976_21_4_a1
A. V. Bulinskiǐ; I. G. Žurbenko. A central limit theorem for additive random functions. Teoriâ veroâtnostej i ee primeneniâ, Tome 21 (1976) no. 4, pp. 707-717. http://geodesic.mathdoc.fr/item/TVP_1976_21_4_a1/