Asymptotics of renewal functions
Teoriâ veroâtnostej i ee primeneniâ, Tome 21 (1976) no. 4, pp. 689-706 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\xi_1,\dots$ be a sequence of independent identically distributed non-negative random variables. If the distribution function of $\xi_1$ has an absolutely continuous component, $\mathbf M\xi_1^{\alpha}<\infty$, $\alpha\ge 1$, then $$ \biggl|H-\frac{1}{a}L-\frac{1}{a}F_2\biggr|([t,t+y))= \begin{cases} o(t^{-2(\alpha-1)}), &1\le\alpha<2, \\ o(t^{-\alpha}), &2\le\alpha, \end{cases} $$ as $t\to\infty$ for $y>0$. Here: for a Borel set $A$, $$ H(A)+\sum_{n=0}^{\infty}\mathbf P(S_n\in A),\qquad S_n=\sum_{k=1}^n\xi_k,\qquad S_0=0; $$ $L$ is the Lebesgue measure; $a=\mathbf M\xi_1$; $$ F_2(A)=\int_A\biggl(\int_x^{\infty}\mathbf P(\xi_1>u)\,du\biggr)\,dx; $$ $|\mu|(A)$ stands for the total variation of a measure $\mu$ on a set $A$.
@article{TVP_1976_21_4_a0,
     author = {B. A. Rogozin},
     title = {Asymptotics of renewal functions},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {689--706},
     year = {1976},
     volume = {21},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1976_21_4_a0/}
}
TY  - JOUR
AU  - B. A. Rogozin
TI  - Asymptotics of renewal functions
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1976
SP  - 689
EP  - 706
VL  - 21
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_1976_21_4_a0/
LA  - ru
ID  - TVP_1976_21_4_a0
ER  - 
%0 Journal Article
%A B. A. Rogozin
%T Asymptotics of renewal functions
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1976
%P 689-706
%V 21
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_1976_21_4_a0/
%G ru
%F TVP_1976_21_4_a0
B. A. Rogozin. Asymptotics of renewal functions. Teoriâ veroâtnostej i ee primeneniâ, Tome 21 (1976) no. 4, pp. 689-706. http://geodesic.mathdoc.fr/item/TVP_1976_21_4_a0/