On a~representation of random variables
Teoriâ veroâtnostej i ee primeneniâ, Tome 21 (1976) no. 3, pp. 645-648

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\xi$ and $\eta$ be arbitrary random variables. It is proved that there exists an independent of $\eta$ random variable $\zeta$, such that $\xi$ is a function of $\eta$ and $\zeta$. This result is applied to prove the existence, for any $\delta>0$, of a $\delta$-anticipating strong solution of an Itô stochastic equation with bounded drift and unit diffusion coefficient.
@article{TVP_1976_21_3_a17,
     author = {A. V. Skorohod},
     title = {On a~representation of random variables},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {645--648},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1976_21_3_a17/}
}
TY  - JOUR
AU  - A. V. Skorohod
TI  - On a~representation of random variables
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1976
SP  - 645
EP  - 648
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1976_21_3_a17/
LA  - ru
ID  - TVP_1976_21_3_a17
ER  - 
%0 Journal Article
%A A. V. Skorohod
%T On a~representation of random variables
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1976
%P 645-648
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1976_21_3_a17/
%G ru
%F TVP_1976_21_3_a17
A. V. Skorohod. On a~representation of random variables. Teoriâ veroâtnostej i ee primeneniâ, Tome 21 (1976) no. 3, pp. 645-648. http://geodesic.mathdoc.fr/item/TVP_1976_21_3_a17/