A~representation of some martingales
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 21 (1976) no. 3, pp. 613-620
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $X_t=(X_t^1,\dots,X_t^n)$, $0\le t\le 1$, be a continuous square integrable martingale for which the processes $\langle X^i,X^j\rangle_t$, $i,j=1,\dots,n$, are deterministic, and let $(Y_t,\mathscr F_t^X)$ be a square integrable martingale where $\mathscr F_t^X=\sigma\{X_s,s\le t\}$.
In the paper, the representation $\displaystyle Y_t=Y_0+\int_0^t\sum_{i=1}^nf_{s-}^i\,dX_s^i$ is proved where $f_s^i$ are previsible processes with $\displaystyle\mathbf M\int_0^{\infty}\sum_{i,j=1}^nf_s^if_s^jd\langle X^i,X^j\rangle_s\infty.$
			
            
            
            
          
        
      @article{TVP_1976_21_3_a12,
     author = {L. I. Gal'\v{c}uk},
     title = {A~representation of some martingales},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {613--620},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1976_21_3_a12/}
}
                      
                      
                    L. I. Gal'čuk. A~representation of some martingales. Teoriâ veroâtnostej i ee primeneniâ, Tome 21 (1976) no. 3, pp. 613-620. http://geodesic.mathdoc.fr/item/TVP_1976_21_3_a12/
