On the distribution of the first jump for a~process with independent increments
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 21 (1976) no. 3, pp. 486-496
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $\xi(t)$ be a process with independent increments. In the paper, the limit distribution for the size $\chi$ of the first jump over an «infinite» bound and estimates with absolute constants for $\mathbf M\chi^s$ are obtained.
			
            
            
            
          
        
      @article{TVP_1976_21_3_a1,
     author = {A. A. Mogul'skiǐ},
     title = {On the distribution of the first jump for a~process with independent increments},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {486--496},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1976_21_3_a1/}
}
                      
                      
                    TY - JOUR AU - A. A. Mogul'skiǐ TI - On the distribution of the first jump for a~process with independent increments JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1976 SP - 486 EP - 496 VL - 21 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1976_21_3_a1/ LA - ru ID - TVP_1976_21_3_a1 ER -
A. A. Mogul'skiǐ. On the distribution of the first jump for a~process with independent increments. Teoriâ veroâtnostej i ee primeneniâ, Tome 21 (1976) no. 3, pp. 486-496. http://geodesic.mathdoc.fr/item/TVP_1976_21_3_a1/
