On the distribution of the first jump for a~process with independent increments
Teoriâ veroâtnostej i ee primeneniâ, Tome 21 (1976) no. 3, pp. 486-496

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\xi(t)$ be a process with independent increments. In the paper, the limit distribution for the size $\chi$ of the first jump over an «infinite» bound and estimates with absolute constants for $\mathbf M\chi^s$ are obtained.
@article{TVP_1976_21_3_a1,
     author = {A. A. Mogul'skiǐ},
     title = {On the distribution of the first jump for a~process with independent increments},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {486--496},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1976_21_3_a1/}
}
TY  - JOUR
AU  - A. A. Mogul'skiǐ
TI  - On the distribution of the first jump for a~process with independent increments
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1976
SP  - 486
EP  - 496
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1976_21_3_a1/
LA  - ru
ID  - TVP_1976_21_3_a1
ER  - 
%0 Journal Article
%A A. A. Mogul'skiǐ
%T On the distribution of the first jump for a~process with independent increments
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1976
%P 486-496
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1976_21_3_a1/
%G ru
%F TVP_1976_21_3_a1
A. A. Mogul'skiǐ. On the distribution of the first jump for a~process with independent increments. Teoriâ veroâtnostej i ee primeneniâ, Tome 21 (1976) no. 3, pp. 486-496. http://geodesic.mathdoc.fr/item/TVP_1976_21_3_a1/