On the choice of estimation technique for regression experimental designs unbiased in $L_2$-metric
Teoriâ veroâtnostej i ee primeneniâ, Tome 21 (1976) no. 2, pp. 435-441
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper deals with regression experimental designs unbiased in the $L_2$-metric. Consideration is concentrated upon the choice of estimation technique for design procedures. It is shown that the procedure using the reproducing kernel method dominates the least-squares procedure. In particular, results for polynominal and trigonometric regressions are derived. Numerical examples are given.
@article{TVP_1976_21_2_a24,
author = {E. V. Sedunov},
title = {On the choice of estimation technique for regression experimental designs unbiased in $L_2$-metric},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {435--441},
publisher = {mathdoc},
volume = {21},
number = {2},
year = {1976},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1976_21_2_a24/}
}
TY - JOUR AU - E. V. Sedunov TI - On the choice of estimation technique for regression experimental designs unbiased in $L_2$-metric JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1976 SP - 435 EP - 441 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1976_21_2_a24/ LA - ru ID - TVP_1976_21_2_a24 ER -
E. V. Sedunov. On the choice of estimation technique for regression experimental designs unbiased in $L_2$-metric. Teoriâ veroâtnostej i ee primeneniâ, Tome 21 (1976) no. 2, pp. 435-441. http://geodesic.mathdoc.fr/item/TVP_1976_21_2_a24/