The distribution of the size of the first jump over a~level for a~class of stochastic processes
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 21 (1976) no. 2, pp. 430-434
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The paper deals with a stochastic process with independent increments with the characteristic function
$$
\varphi(t,z)=\exp\biggl\{t\biggl[i\alpha z-\frac{\sigma^2}{2}z^2+\lambda\int_0^{\infty}(e^{izx}-1)F\,(dx)\biggr]\biggr\}.
$$
For the distribution of the size of the first jump over a level $x>0$, a) an integro-differential equation (in $x$) is obtained, b) the limiting behaviour is studied as $x\to\infty$ and c) the Laplace transform (in $x$) is found.
			
            
            
            
          
        
      @article{TVP_1976_21_2_a23,
     author = {A. I. Foht},
     title = {The distribution of the size of the first jump over a~level for a~class of stochastic processes},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {430--434},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1976_21_2_a23/}
}
                      
                      
                    TY - JOUR AU - A. I. Foht TI - The distribution of the size of the first jump over a~level for a~class of stochastic processes JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1976 SP - 430 EP - 434 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1976_21_2_a23/ LA - ru ID - TVP_1976_21_2_a23 ER -
A. I. Foht. The distribution of the size of the first jump over a~level for a~class of stochastic processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 21 (1976) no. 2, pp. 430-434. http://geodesic.mathdoc.fr/item/TVP_1976_21_2_a23/
