Limit theorems for the first passage times of a~certain level
Teoriâ veroâtnostej i ee primeneniâ, Tome 21 (1976) no. 2, pp. 417-420

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\{X_n\}_{n=1,2,\dots,}$ be a sequence of i.i.d.r.v.'s and $T(r)=\min\{k\ge 1:X_1+\dots+X_k\ge r\}$ be the first passage time of a level $r>0$. Two estimates are obtained for the rate of convergence of $T(r)$ to limit laws as $r\to\infty$.
@article{TVP_1976_21_2_a20,
     author = {N. I. Migaǐ and V. B. Nevzorov},
     title = {Limit theorems for the first passage times of a~certain level},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {417--420},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1976_21_2_a20/}
}
TY  - JOUR
AU  - N. I. Migaǐ
AU  - V. B. Nevzorov
TI  - Limit theorems for the first passage times of a~certain level
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1976
SP  - 417
EP  - 420
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1976_21_2_a20/
LA  - ru
ID  - TVP_1976_21_2_a20
ER  - 
%0 Journal Article
%A N. I. Migaǐ
%A V. B. Nevzorov
%T Limit theorems for the first passage times of a~certain level
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1976
%P 417-420
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1976_21_2_a20/
%G ru
%F TVP_1976_21_2_a20
N. I. Migaǐ; V. B. Nevzorov. Limit theorems for the first passage times of a~certain level. Teoriâ veroâtnostej i ee primeneniâ, Tome 21 (1976) no. 2, pp. 417-420. http://geodesic.mathdoc.fr/item/TVP_1976_21_2_a20/