Limit theorems for the first passage times of a~certain level
Teoriâ veroâtnostej i ee primeneniâ, Tome 21 (1976) no. 2, pp. 417-420
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\{X_n\}_{n=1,2,\dots,}$ be a sequence of i.i.d.r.v.'s and $T(r)=\min\{k\ge 1:X_1+\dots+X_k\ge r\}$ be the first passage time of a level $r>0$. Two estimates are obtained for the rate of convergence of $T(r)$ to limit laws as $r\to\infty$.
@article{TVP_1976_21_2_a20,
author = {N. I. Migaǐ and V. B. Nevzorov},
title = {Limit theorems for the first passage times of a~certain level},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {417--420},
publisher = {mathdoc},
volume = {21},
number = {2},
year = {1976},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1976_21_2_a20/}
}
TY - JOUR AU - N. I. Migaǐ AU - V. B. Nevzorov TI - Limit theorems for the first passage times of a~certain level JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1976 SP - 417 EP - 420 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1976_21_2_a20/ LA - ru ID - TVP_1976_21_2_a20 ER -
N. I. Migaǐ; V. B. Nevzorov. Limit theorems for the first passage times of a~certain level. Teoriâ veroâtnostej i ee primeneniâ, Tome 21 (1976) no. 2, pp. 417-420. http://geodesic.mathdoc.fr/item/TVP_1976_21_2_a20/