An ergodic theorem for Markov processes.~I
Teoriâ veroâtnostej i ee primeneniâ, Tome 21 (1976) no. 2, pp. 410-416

Voir la notice de l'article provenant de la source Math-Net.Ru

For a class of Markov processes, M. Fukushima [3] proposed a description of the exceptional set in Chacon–Ornstein's theorem. In the paper, a generalization of this result is given.
@article{TVP_1976_21_2_a19,
     author = {M. G. \v{S}ur},
     title = {An ergodic theorem for {Markov} {processes.~I}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {410--416},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1976_21_2_a19/}
}
TY  - JOUR
AU  - M. G. Šur
TI  - An ergodic theorem for Markov processes.~I
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1976
SP  - 410
EP  - 416
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1976_21_2_a19/
LA  - ru
ID  - TVP_1976_21_2_a19
ER  - 
%0 Journal Article
%A M. G. Šur
%T An ergodic theorem for Markov processes.~I
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1976
%P 410-416
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1976_21_2_a19/
%G ru
%F TVP_1976_21_2_a19
M. G. Šur. An ergodic theorem for Markov processes.~I. Teoriâ veroâtnostej i ee primeneniâ, Tome 21 (1976) no. 2, pp. 410-416. http://geodesic.mathdoc.fr/item/TVP_1976_21_2_a19/