Estimates for the L\'evy--Prohorov distance
Teoriâ veroâtnostej i ee primeneniâ, Tome 21 (1976) no. 2, pp. 406-410

Voir la notice de l'article provenant de la source Math-Net.Ru

Estimates, analogous to the Esseen inequality, are given for the Lévy–Prohorov distance between distributions in arbitrary finite-dimensional normed spaces. These results are obtained under the assumption that the distributions in question have sufficiently smooth characteristic functions.
@article{TVP_1976_21_2_a18,
     author = {V. A. Abramov},
     title = {Estimates for the {L\'evy--Prohorov} distance},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {406--410},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1976_21_2_a18/}
}
TY  - JOUR
AU  - V. A. Abramov
TI  - Estimates for the L\'evy--Prohorov distance
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1976
SP  - 406
EP  - 410
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1976_21_2_a18/
LA  - ru
ID  - TVP_1976_21_2_a18
ER  - 
%0 Journal Article
%A V. A. Abramov
%T Estimates for the L\'evy--Prohorov distance
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1976
%P 406-410
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1976_21_2_a18/
%G ru
%F TVP_1976_21_2_a18
V. A. Abramov. Estimates for the L\'evy--Prohorov distance. Teoriâ veroâtnostej i ee primeneniâ, Tome 21 (1976) no. 2, pp. 406-410. http://geodesic.mathdoc.fr/item/TVP_1976_21_2_a18/