An ergodic theorem for regenerating processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 21 (1976) no. 2, pp. 402-405

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\xi(t)$, $t\ge 0$, be a regenerating process; $B$ be a measurable set in the phase space; $x(t)$ be the indicator of the event $\{\xi(t)\in B\}$. In this paper, a theorem is proved on convergence of $\displaystyle\frac{1}{T}\int_0^T x(t)\,dt$ to a final probability of the event $\{\xi(t)\in B\}$ as $T\to\infty$.
@article{TVP_1976_21_2_a17,
     author = {G. P. Klimov},
     title = {An ergodic theorem for regenerating processes},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {402--405},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1976_21_2_a17/}
}
TY  - JOUR
AU  - G. P. Klimov
TI  - An ergodic theorem for regenerating processes
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1976
SP  - 402
EP  - 405
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1976_21_2_a17/
LA  - ru
ID  - TVP_1976_21_2_a17
ER  - 
%0 Journal Article
%A G. P. Klimov
%T An ergodic theorem for regenerating processes
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1976
%P 402-405
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1976_21_2_a17/
%G ru
%F TVP_1976_21_2_a17
G. P. Klimov. An ergodic theorem for regenerating processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 21 (1976) no. 2, pp. 402-405. http://geodesic.mathdoc.fr/item/TVP_1976_21_2_a17/