Relatively stable walks
Teoriâ veroâtnostej i ee primeneniâ, Tome 21 (1976) no. 2, pp. 383-387
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $\xi_1,\xi_2,\dots$ he a sequence of i.i.d.r.v.'s, $\displaystyle S_n=\sum_{k=1}^n\xi_k$, $n=1,\dots$. The following statements are equivalent: 1) $S_n/a_n\to 1$ in probability for some sequence of positive numbers $a_1,a_2,\dots$; 2) $\displaystyle\nu(x)=\int_{\{|\xi_1|0$ for sufficiently large $x>0$, $\displaystyle\qquad\lim_{x\to\infty}\nu(xy)/\nu(x)=1$ for all $y>0\quad$ and $\displaystyle\quad\lim_{x\to\infty}x\mathbf P(|\xi_1|\ge x)/\nu(x)=0$.
@article{TVP_1976_21_2_a12,
author = {B. A. Rogosin},
title = {Relatively stable walks},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {383--387},
year = {1976},
volume = {21},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1976_21_2_a12/}
}
B. A. Rogosin. Relatively stable walks. Teoriâ veroâtnostej i ee primeneniâ, Tome 21 (1976) no. 2, pp. 383-387. http://geodesic.mathdoc.fr/item/TVP_1976_21_2_a12/