On the accuracy of approximation in the central limit theorem
Teoriâ veroâtnostej i ee primeneniâ, Tome 21 (1976) no. 1, pp. 107-122

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $$ \Delta_n=\sup_x|\mathbf P(\xi_1+\dots+\xi_n\sqrt n)-\Phi(x)|, $$ where $\xi_1,\xi_2,\dots$ are independent identically distributed random variables with the distribution function $F(x)$, $\mathbf E|\xi_1|^2=1$, $\mathbf E\xi_1=0$, and where $\Phi$ is the standard normal distribution function. We investigate necessary and sufficient conditions on $F(x)$ for the following two series to converge: $$ \sum h(\sqrt n)\frac{1}{n}\Delta_n\infty,\quad\sum h(\sqrt n)n^{-3/2}\Delta_n\infty, $$ where $$ h(y)>0,\qquad h(y)\uparrow,\qquad h(y)/y\downarrow. $$ The case of Chebyshev–Gramer asymptotic expansions is also discussed.
@article{TVP_1976_21_1_a7,
     author = {{\CYRV}. A. Lif\v{s}ic},
     title = {On the accuracy of approximation in the central limit theorem},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {107--122},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1976_21_1_a7/}
}
TY  - JOUR
AU  - В. A. Lifšic
TI  - On the accuracy of approximation in the central limit theorem
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1976
SP  - 107
EP  - 122
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1976_21_1_a7/
LA  - ru
ID  - TVP_1976_21_1_a7
ER  - 
%0 Journal Article
%A В. A. Lifšic
%T On the accuracy of approximation in the central limit theorem
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1976
%P 107-122
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1976_21_1_a7/
%G ru
%F TVP_1976_21_1_a7
В. A. Lifšic. On the accuracy of approximation in the central limit theorem. Teoriâ veroâtnostej i ee primeneniâ, Tome 21 (1976) no. 1, pp. 107-122. http://geodesic.mathdoc.fr/item/TVP_1976_21_1_a7/