Brownian motion and harmonic functions on manifolds of negative curvature
Teoriâ veroâtnostej i ee primeneniâ, Tome 21 (1976) no. 1, pp. 81-94

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate positive solutions of the equation $\Delta u=0$, where $\Delta$ is the Beltrami–Laplace operator on manifold $M$ of negative curvature $K$. In section 3 we prove the existence and uniqueness of the Dirichlet problem with a continuous boundary function defined on the absolute of the manifold $M$. If the curvature $K$ changes slowly at infinity (see condition 2), we prove that the structure of the space of minimal positive solutions of $\Delta u=0$ is the same as in the case of constant negative curvature, i. e. there is a one-to-one correspondence between points of the absolute and normalized minimal positive solutions of $\Delta u=0$.
@article{TVP_1976_21_1_a5,
     author = {Yu. I. Kifer},
     title = {Brownian motion and harmonic functions on manifolds of negative curvature},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {81--94},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1976_21_1_a5/}
}
TY  - JOUR
AU  - Yu. I. Kifer
TI  - Brownian motion and harmonic functions on manifolds of negative curvature
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1976
SP  - 81
EP  - 94
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1976_21_1_a5/
LA  - ru
ID  - TVP_1976_21_1_a5
ER  - 
%0 Journal Article
%A Yu. I. Kifer
%T Brownian motion and harmonic functions on manifolds of negative curvature
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1976
%P 81-94
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1976_21_1_a5/
%G ru
%F TVP_1976_21_1_a5
Yu. I. Kifer. Brownian motion and harmonic functions on manifolds of negative curvature. Teoriâ veroâtnostej i ee primeneniâ, Tome 21 (1976) no. 1, pp. 81-94. http://geodesic.mathdoc.fr/item/TVP_1976_21_1_a5/