Automodel probability distributions
Teoriâ veroâtnostej i ee primeneniâ, Tome 21 (1976) no. 1, pp. 63-80 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

As in traditional probability theory, one of the most difficult problems in the theory of phase transitions concerns the limit distributions for sums of a large number of random variables. However, these variables are strongly dependent. Therefore the usual methods cannot be applied. The limit distributions which appear in these problems are invariant under a subgroup of linear endomorphisms, called the renormalization group. In this paper, we find Gaussian invariant distributions and construct formal series for non-Gaussian ones. Our approach is inspired by the famous renormalization group method widely known in physical literature and developed mainly by K. Wilson, M. Fisher and L. Kadanoff.
@article{TVP_1976_21_1_a4,
     author = {Ya. G. Sinaǐ},
     title = {Automodel probability distributions},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {63--80},
     year = {1976},
     volume = {21},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1976_21_1_a4/}
}
TY  - JOUR
AU  - Ya. G. Sinaǐ
TI  - Automodel probability distributions
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1976
SP  - 63
EP  - 80
VL  - 21
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_1976_21_1_a4/
LA  - ru
ID  - TVP_1976_21_1_a4
ER  - 
%0 Journal Article
%A Ya. G. Sinaǐ
%T Automodel probability distributions
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1976
%P 63-80
%V 21
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_1976_21_1_a4/
%G ru
%F TVP_1976_21_1_a4
Ya. G. Sinaǐ. Automodel probability distributions. Teoriâ veroâtnostej i ee primeneniâ, Tome 21 (1976) no. 1, pp. 63-80. http://geodesic.mathdoc.fr/item/TVP_1976_21_1_a4/