On disposal of particles in cells and random mappings of a~finite set
Teoriâ veroâtnostej i ee primeneniâ, Tome 21 (1976) no. 1, pp. 48-62
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the uniform distribution on the set $\mathfrak M_n$ of all mappings of the finite set $\{1,2,\dots,n\}$ into itself. A random mapping from the set $\mathfrak M_n$ has a random number of components $\varkappa_n=\alpha_1+\dots+\alpha_n$, where $\alpha_r$ is the number of components of size $r$. We arrange the components according to their sizes and denote by $S_m$ the size of the $m$th component in the sequence. We prove a normal local limit theorem for $\varkappa_n$, a Poisson limit theorem for $\alpha_r$ and limit theorems for extreme and middle terms of the sequence $S_1,\dots,S_{\varkappa_n}$.
@article{TVP_1976_21_1_a3,
author = {V. F. Kol\v{c}in},
title = {On disposal of particles in cells and random mappings of a~finite set},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {48--62},
publisher = {mathdoc},
volume = {21},
number = {1},
year = {1976},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1976_21_1_a3/}
}
V. F. Kolčin. On disposal of particles in cells and random mappings of a~finite set. Teoriâ veroâtnostej i ee primeneniâ, Tome 21 (1976) no. 1, pp. 48-62. http://geodesic.mathdoc.fr/item/TVP_1976_21_1_a3/