A~continuity criterion for a~class of Markov processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 21 (1976) no. 1, pp. 169-171

Voir la notice de l'article provenant de la source Math-Net.Ru

The following theorem is proved. For a standard process $X$ with a standard adjoint process $\widehat X$, the conditions: 1) the sample paths $x_t(\omega)$ of the process $X$ are continuous a.s., 2) $\forall\,f,g\in C_K\colon S_f\bigcap S_g=\varnothing$, $\langle P_t,f,g\rangle=o(t)$, $t\downarrow 0$, are equivalent.
@article{TVP_1976_21_1_a16,
     author = {A. D. Bendikov},
     title = {A~continuity criterion for a~class of {Markov} processes},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {169--171},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1976_21_1_a16/}
}
TY  - JOUR
AU  - A. D. Bendikov
TI  - A~continuity criterion for a~class of Markov processes
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1976
SP  - 169
EP  - 171
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1976_21_1_a16/
LA  - ru
ID  - TVP_1976_21_1_a16
ER  - 
%0 Journal Article
%A A. D. Bendikov
%T A~continuity criterion for a~class of Markov processes
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1976
%P 169-171
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1976_21_1_a16/
%G ru
%F TVP_1976_21_1_a16
A. D. Bendikov. A~continuity criterion for a~class of Markov processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 21 (1976) no. 1, pp. 169-171. http://geodesic.mathdoc.fr/item/TVP_1976_21_1_a16/