A continuity criterion for a class of Markov processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 21 (1976) no. 1, pp. 169-171
Cet article a éte moissonné depuis la source Math-Net.Ru
The following theorem is proved. For a standard process $X$ with a standard adjoint process $\widehat X$, the conditions: 1) the sample paths $x_t(\omega)$ of the process $X$ are continuous a.s., 2) $\forall\,f,g\in C_K\colon S_f\bigcap S_g=\varnothing$, $\langle P_t,f,g\rangle=o(t)$, $t\downarrow 0$, are equivalent.
@article{TVP_1976_21_1_a16,
author = {A. D. Bendikov},
title = {A~continuity criterion for a~class of {Markov} processes},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {169--171},
year = {1976},
volume = {21},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1976_21_1_a16/}
}
A. D. Bendikov. A continuity criterion for a class of Markov processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 21 (1976) no. 1, pp. 169-171. http://geodesic.mathdoc.fr/item/TVP_1976_21_1_a16/