A~finite controlled Markov chain with small break probability
Teoriâ veroâtnostej i ee primeneniâ, Tome 21 (1976) no. 1, pp. 157-163

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with a controlled Markov chain with a finite number of states $s\in S$ and a finite number of decisions $a\in A$. The optimality criterion is defined by $\mathbf E^{\pi}\widetilde L$, where $\widetilde L$ is a functional invariant with respect to shifts of the trajectory $(s_n,a_n;\,n\ge 1)$, and can be approximated, for small break probabilities, by the criterion defined by $\mathbf E^{\pi}c(s_{\tau},a_{\tau})$. Existence of an optimal stationary policy is proved, and a method for its construction is given.
@article{TVP_1976_21_1_a14,
     author = {R. Ya. \v{C}ita\v{s}vili},
     title = {A~finite controlled {Markov} chain with small break probability},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {157--163},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1976_21_1_a14/}
}
TY  - JOUR
AU  - R. Ya. Čitašvili
TI  - A~finite controlled Markov chain with small break probability
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1976
SP  - 157
EP  - 163
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1976_21_1_a14/
LA  - ru
ID  - TVP_1976_21_1_a14
ER  - 
%0 Journal Article
%A R. Ya. Čitašvili
%T A~finite controlled Markov chain with small break probability
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1976
%P 157-163
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1976_21_1_a14/
%G ru
%F TVP_1976_21_1_a14
R. Ya. Čitašvili. A~finite controlled Markov chain with small break probability. Teoriâ veroâtnostej i ee primeneniâ, Tome 21 (1976) no. 1, pp. 157-163. http://geodesic.mathdoc.fr/item/TVP_1976_21_1_a14/