Local limit theorems for weighted sums of independent random variables
Teoriâ veroâtnostej i ee primeneniâ, Tome 21 (1976) no. 1, pp. 135-142
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we study the behaviour of $\displaystyle S_n=\sum_{k=-\infty}^{\infty}a_{kn}\xi_k$ as $n$ tends to infinity, where $\xi_k$ are independent identically distributed random variables and their common distribution function belongs to the domain of attraction of a certain stable law $G$ with index $\alpha$. Let the following two conditions on the matrix of coefficients ($a_{kn}$) be satisfied:
1) $\displaystyle\sum_{k=-\infty}^{\infty}|a_{kn}|^{\alpha}\widetilde h(a_{kn})=b_n\to 1\qquad(n\to\infty),\\$
where $\widetilde h(x)$ is the slowly varying function from the representation for the characteristic function of $G$;
2) $\displaystyle\gamma_n=\sup_k|a_{kn}|\to 0\qquad(n\to\infty).\\$
Then it is shown that the distribution function of $S_n$ converges to a stable distribution function, and, if $\displaystyle \int_{-\infty}^{\infty}|f(t)|^p\,dt\infty$, $p>0$, where $f(t)$ is the characteristic function of $\xi_k$ then the density function of $S_n$ exists and converges to the density function of the limit distribution.
@article{TVP_1976_21_1_a10,
author = {E. M. Shoukry},
title = {Local limit theorems for weighted sums of independent random variables},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {135--142},
publisher = {mathdoc},
volume = {21},
number = {1},
year = {1976},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1976_21_1_a10/}
}
E. M. Shoukry. Local limit theorems for weighted sums of independent random variables. Teoriâ veroâtnostej i ee primeneniâ, Tome 21 (1976) no. 1, pp. 135-142. http://geodesic.mathdoc.fr/item/TVP_1976_21_1_a10/