Convergence of moments in the central limit theorem for nonstationary Markov chains
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 20 (1975) no. 4, pp. 755-771
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let, for every $n=1,2,\dots,$ random variables $X_{ns}$, $1\le s\le n$, form a Markov chain with transition functions $Q_{nt}$, $1\le t\le n-1$. We denote
$$
S_n=\sum_sX_{ns},\quad F_n(x)=\mathbf P(S_n\sqrt{\mathbf DS_n}),\quad\alpha_n=\min_t\alpha(Q_{nt}),
$$
where $\alpha(Q_{nt})$ is the ergodicity coefficient of $Q_{nt}$.
Theorem. {\em If 
$$
|X_{ns}|\le C,\quad\mathbf EX_{ns}=0,\quad\mathbf DX_{ns}\ge c,\quad\alpha_nn^{1/3}/\ln n\to\infty,
$$
then, for every $p\ge0$,
$$
\int_{-\infty}^\infty|x|^pF_n(dx)
$$
converges to the pth absolute moment of} $N(0,1)$.
			
            
            
            
          
        
      @article{TVP_1975_20_4_a4,
     author = {{\CYRV}. A. Lif\v{s}ic},
     title = {Convergence of moments in the central limit theorem for nonstationary {Markov} chains},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {755--771},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1975_20_4_a4/}
}
                      
                      
                    TY - JOUR AU - В. A. Lifšic TI - Convergence of moments in the central limit theorem for nonstationary Markov chains JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1975 SP - 755 EP - 771 VL - 20 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1975_20_4_a4/ LA - ru ID - TVP_1975_20_4_a4 ER -
В. A. Lifšic. Convergence of moments in the central limit theorem for nonstationary Markov chains. Teoriâ veroâtnostej i ee primeneniâ, Tome 20 (1975) no. 4, pp. 755-771. http://geodesic.mathdoc.fr/item/TVP_1975_20_4_a4/
