Convergence of moments in the central limit theorem for nonstationary Markov chains
Teoriâ veroâtnostej i ee primeneniâ, Tome 20 (1975) no. 4, pp. 755-771
Cet article a éte moissonné depuis la source Math-Net.Ru
Let, for every $n=1,2,\dots,$ random variables $X_{ns}$, $1\le s\le n$, form a Markov chain with transition functions $Q_{nt}$, $1\le t\le n-1$. We denote $$ S_n=\sum_sX_{ns},\quad F_n(x)=\mathbf P(S_n<x\sqrt{\mathbf DS_n}),\quad\alpha_n=\min_t\alpha(Q_{nt}), $$ where $\alpha(Q_{nt})$ is the ergodicity coefficient of $Q_{nt}$. Theorem. {\em If $$ |X_{ns}|\le C,\quad\mathbf EX_{ns}=0,\quad\mathbf DX_{ns}\ge c,\quad\alpha_nn^{1/3}/\ln n\to\infty, $$ then, for every $p\ge0$, $$ \int_{-\infty}^\infty|x|^pF_n(dx) $$ converges to the pth absolute moment of} $N(0,1)$.
@article{TVP_1975_20_4_a4,
author = {{\CYRV}. A. Lif\v{s}ic},
title = {Convergence of moments in the central limit theorem for nonstationary {Markov} chains},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {755--771},
year = {1975},
volume = {20},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1975_20_4_a4/}
}
В. A. Lifšic. Convergence of moments in the central limit theorem for nonstationary Markov chains. Teoriâ veroâtnostej i ee primeneniâ, Tome 20 (1975) no. 4, pp. 755-771. http://geodesic.mathdoc.fr/item/TVP_1975_20_4_a4/