On efficiency of a~class of non-parametric estimates
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 20 (1975) no. 4, pp. 738-754
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			For a general class of statistics $T_n$ defined by a relation of the form
$$
\sum_{i=1}^n\psi(X_i,T_n)=0,
$$
where $X_i$ are observations, a number of results is proved which show that $T_n$ (or, in some cases, their appropriate modifications $T_n^*$) are locally asymptotically minimax estimates of the corresponding functional $\Phi(F)$ of the unknown distribution $F$ provided the family of all admissible distributions $F$ is sufficiently large.
			
            
            
            
          
        
      @article{TVP_1975_20_4_a3,
     author = {B. Ya. Levit},
     title = {On efficiency of a~class of non-parametric estimates},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {738--754},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1975_20_4_a3/}
}
                      
                      
                    B. Ya. Levit. On efficiency of a~class of non-parametric estimates. Teoriâ veroâtnostej i ee primeneniâ, Tome 20 (1975) no. 4, pp. 738-754. http://geodesic.mathdoc.fr/item/TVP_1975_20_4_a3/
