The density of the distribution of the maximum of a~Gaussian process
Teoriâ veroâtnostej i ee primeneniâ, Tome 20 (1975) no. 4, pp. 865-873
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $X(t,\omega)$ be a separable Gaussian process,
\begin{gather*}
\forall t\mathbf EX_t\ge0,\quad f(\omega)=\sup_tX(t,\omega)\infty\quad\text{with probability }1,
\\
F(a)=\mathbf P\{f\};\quad\inf\{a\colon F(a)>0\}=a_0\in[-\infty,+\infty).
\end{gather*}
Then the density $F'(a)$ exists and is continuous at every $a$ except, may be, $a_0$ (at this and only this point $F$ may have a jump!) and at most countable set of points, at which $F'$ has jumps downwards. The density $F'(a)$ decreases almost as rapidly as $\exp(-a^2/2)$ when $a\to+\infty$.
Provided $\mathbf EX_t$ and $\mathbf EX_t^2$ do not depend on $t$, $F$ is continuous everywhere and $F'$ everywhere except, may be, $a_0$, where $F$' may have a jump of a finite size. Asymptotic behaviour of $1-F$ at $+\infty$ determines that of $F'$. Corresponding inequalities are given.
@article{TVP_1975_20_4_a14,
author = {B. S. Tsirel'son},
title = {The density of the distribution of the maximum of {a~Gaussian} process},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {865--873},
publisher = {mathdoc},
volume = {20},
number = {4},
year = {1975},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1975_20_4_a14/}
}
B. S. Tsirel'son. The density of the distribution of the maximum of a~Gaussian process. Teoriâ veroâtnostej i ee primeneniâ, Tome 20 (1975) no. 4, pp. 865-873. http://geodesic.mathdoc.fr/item/TVP_1975_20_4_a14/