A~controlled finite Markov chain with arbitrary set of decisions
Teoriâ veroâtnostej i ee primeneniâ, Tome 20 (1975) no. 4, pp. 855-864

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a controlled Markov chain with a finite set $S$ of states $s$ and an arbitrary set $A$ of decisions $a$ and with the optimality criterion of the form $$ \mathbf E^\pi\biggl[\sum_{n=1}^\tau r(s_n,a_n)+c(s_\tau,a_\tau)\biggr], $$ where the stopping moment $\tau$ does not depend on $(s_n,a_n);n\ge1)$ and has the geometric distribution. Sufficient conditions for the existence of $(k,\varepsilon)$-optimal policies are found.
@article{TVP_1975_20_4_a13,
     author = {R. Ya. Chitashvili},
     title = {A~controlled finite {Markov} chain with arbitrary set of decisions},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {855--864},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1975_20_4_a13/}
}
TY  - JOUR
AU  - R. Ya. Chitashvili
TI  - A~controlled finite Markov chain with arbitrary set of decisions
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1975
SP  - 855
EP  - 864
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1975_20_4_a13/
LA  - ru
ID  - TVP_1975_20_4_a13
ER  - 
%0 Journal Article
%A R. Ya. Chitashvili
%T A~controlled finite Markov chain with arbitrary set of decisions
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1975
%P 855-864
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1975_20_4_a13/
%G ru
%F TVP_1975_20_4_a13
R. Ya. Chitashvili. A~controlled finite Markov chain with arbitrary set of decisions. Teoriâ veroâtnostej i ee primeneniâ, Tome 20 (1975) no. 4, pp. 855-864. http://geodesic.mathdoc.fr/item/TVP_1975_20_4_a13/