A~controlled finite Markov chain with arbitrary set of decisions
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 20 (1975) no. 4, pp. 855-864
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider a controlled Markov chain with a finite set $S$ of states $s$ and an arbitrary set $A$ of decisions $a$ and with the optimality criterion of the form
$$
\mathbf E^\pi\biggl[\sum_{n=1}^\tau r(s_n,a_n)+c(s_\tau,a_\tau)\biggr],	 
$$
where the stopping moment $\tau$ does not depend on $(s_n,a_n);n\ge1)$ and has the geometric distribution.
Sufficient conditions for the existence of $(k,\varepsilon)$-optimal policies are found.
			
            
            
            
          
        
      @article{TVP_1975_20_4_a13,
     author = {R. Ya. Chitashvili},
     title = {A~controlled finite {Markov} chain with arbitrary set of decisions},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {855--864},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1975_20_4_a13/}
}
                      
                      
                    R. Ya. Chitashvili. A~controlled finite Markov chain with arbitrary set of decisions. Teoriâ veroâtnostej i ee primeneniâ, Tome 20 (1975) no. 4, pp. 855-864. http://geodesic.mathdoc.fr/item/TVP_1975_20_4_a13/
