The structure of infinitely divisible distributions on a bicompact Abelian group
Teoriâ veroâtnostej i ee primeneniâ, Tome 20 (1975) no. 4, pp. 712-724
Cet article a éte moissonné depuis la source Math-Net.Ru
Any probability distribution can be written in the form $$ F=\alpha_1F_1+\alpha_2F_2+\alpha_3F_3,\quad\alpha_j\ge0,\quad\alpha_1+\alpha_2+\alpha_3=1, $$ where $F_1$ is an absolutely continuous, $F_2$ a singular and $F_3$ a discrete probability distribution. We consider the following problem: what properties of the spectral measure of an infinitely divisible distribution $F$ involve $\alpha_j>0$ ($j=1,2,3$)?
@article{TVP_1975_20_4_a1,
author = {V. M. Zolotarev and V. M. Kruglov},
title = {The structure of infinitely divisible distributions on a~bicompact {Abelian} group},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {712--724},
year = {1975},
volume = {20},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1975_20_4_a1/}
}
TY - JOUR AU - V. M. Zolotarev AU - V. M. Kruglov TI - The structure of infinitely divisible distributions on a bicompact Abelian group JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1975 SP - 712 EP - 724 VL - 20 IS - 4 UR - http://geodesic.mathdoc.fr/item/TVP_1975_20_4_a1/ LA - ru ID - TVP_1975_20_4_a1 ER -
V. M. Zolotarev; V. M. Kruglov. The structure of infinitely divisible distributions on a bicompact Abelian group. Teoriâ veroâtnostej i ee primeneniâ, Tome 20 (1975) no. 4, pp. 712-724. http://geodesic.mathdoc.fr/item/TVP_1975_20_4_a1/