The structure of infinitely divisible distributions on a~bicompact Abelian group
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 20 (1975) no. 4, pp. 712-724
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Any probability distribution can be written in the form
$$
F=\alpha_1F_1+\alpha_2F_2+\alpha_3F_3,\quad\alpha_j\ge0,\quad\alpha_1+\alpha_2+\alpha_3=1, 
$$
where $F_1$ is an absolutely continuous, $F_2$ a singular and $F_3$ a discrete probability distribution. 
We consider the following problem: what properties of the spectral measure of an infinitely divisible distribution $F$ involve $\alpha_j>0$ ($j=1,2,3$)?
			
            
            
            
          
        
      @article{TVP_1975_20_4_a1,
     author = {V. M. Zolotarev and V. M. Kruglov},
     title = {The structure of infinitely divisible distributions on a~bicompact {Abelian} group},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {712--724},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1975_20_4_a1/}
}
                      
                      
                    TY - JOUR AU - V. M. Zolotarev AU - V. M. Kruglov TI - The structure of infinitely divisible distributions on a~bicompact Abelian group JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1975 SP - 712 EP - 724 VL - 20 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1975_20_4_a1/ LA - ru ID - TVP_1975_20_4_a1 ER -
V. M. Zolotarev; V. M. Kruglov. The structure of infinitely divisible distributions on a~bicompact Abelian group. Teoriâ veroâtnostej i ee primeneniâ, Tome 20 (1975) no. 4, pp. 712-724. http://geodesic.mathdoc.fr/item/TVP_1975_20_4_a1/
