The structure of infinitely divisible distributions on a~bicompact Abelian group
Teoriâ veroâtnostej i ee primeneniâ, Tome 20 (1975) no. 4, pp. 712-724

Voir la notice de l'article provenant de la source Math-Net.Ru

Any probability distribution can be written in the form $$ F=\alpha_1F_1+\alpha_2F_2+\alpha_3F_3,\quad\alpha_j\ge0,\quad\alpha_1+\alpha_2+\alpha_3=1, $$ where $F_1$ is an absolutely continuous, $F_2$ a singular and $F_3$ a discrete probability distribution. We consider the following problem: what properties of the spectral measure of an infinitely divisible distribution $F$ involve $\alpha_j>0$ ($j=1,2,3$)?
@article{TVP_1975_20_4_a1,
     author = {V. M. Zolotarev and V. M. Kruglov},
     title = {The structure of infinitely divisible distributions on a~bicompact {Abelian} group},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {712--724},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1975_20_4_a1/}
}
TY  - JOUR
AU  - V. M. Zolotarev
AU  - V. M. Kruglov
TI  - The structure of infinitely divisible distributions on a~bicompact Abelian group
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1975
SP  - 712
EP  - 724
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1975_20_4_a1/
LA  - ru
ID  - TVP_1975_20_4_a1
ER  - 
%0 Journal Article
%A V. M. Zolotarev
%A V. M. Kruglov
%T The structure of infinitely divisible distributions on a~bicompact Abelian group
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1975
%P 712-724
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1975_20_4_a1/
%G ru
%F TVP_1975_20_4_a1
V. M. Zolotarev; V. M. Kruglov. The structure of infinitely divisible distributions on a~bicompact Abelian group. Teoriâ veroâtnostej i ee primeneniâ, Tome 20 (1975) no. 4, pp. 712-724. http://geodesic.mathdoc.fr/item/TVP_1975_20_4_a1/