Limit theorems for polylinear forms and quasi-polynomial functions
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 20 (1975) no. 3, pp. 527-545
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The paper deals with distributions of finite sets of polylinear forms and quasi-polynomial functions when the number of random arguments tends to infinity. As a particular case, arbitrary polynomials of random variables are considered.
The simplest corollary of our theorems is the following:
Let us consider random variables
\begin{gather*}
X_j\in R^1,\quad j=1,\dots,n,\quad\mathbf EX_j=0,\quad\mathbf EX_j^2=1
\\
\zeta_n=b_n^{-1}\sum_{\bar j}a(\bar j)X_{j_1}\dots X_{j_k},
\end{gather*}
where $\bar j=\{j_1,\dots,j_k\}$ be a sample from $(1,\dots,n)$,
\begin{gather*}
b_n^2=\sum_{\bar j}a^2(\bar j);
\\
F_j(A)=\mathbf P(X_j\in A),\quad F=\{F_1,F_2,\dots\},
\end{gather*}
let $\mathbf P_F(A)$ be the probability of $A$ for $F$, $\mathscr F$ be the class of $F$'s such that for any $F\in\mathscr F$ and $n\to\infty$
\begin{gather*}
b_n^{-2}\sum_{j=1}^ns_j^2\int_{|x|>\varepsilon(b/s_j)^{1/k}}x^2F_j(dx)\to0,
\\
s_j^2=\sum_{\bar j\ni j}a^2(\bar j).
\end{gather*}
Then, for any $F$, $G\in\mathscr F$ and $n\to\infty$,
$$
\mathbf P_F(\zeta_n)-\mathbf P_G(\zeta_n)\to0
$$
for almost all $x$ with respect to the Lebesgue measure on $R^1$.
			
            
            
            
          
        
      @article{TVP_1975_20_3_a3,
     author = {V. I. Rotar'},
     title = {Limit theorems for polylinear forms and quasi-polynomial functions},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {527--545},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1975_20_3_a3/}
}
                      
                      
                    V. I. Rotar'. Limit theorems for polylinear forms and quasi-polynomial functions. Teoriâ veroâtnostej i ee primeneniâ, Tome 20 (1975) no. 3, pp. 527-545. http://geodesic.mathdoc.fr/item/TVP_1975_20_3_a3/
