Some properties of lacunary series and Gaussian measures connected with uniform versions of properties of Egoroff and Lusin
Teoriâ veroâtnostej i ee primeneniâ, Tome 20 (1975) no. 3, pp. 664-667 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $A$ be a measurable subset of $[0,1]$ and $\operatorname{mes}A>0$. For any function $f$ satisfying \begin{gather*} f(t)=\sum(a_k\cos\lambda_kt+b_k\sin\lambda_kt),\quad\lambda_1,\lambda_2,\dots>0,\quad\inf(\lambda_{k+1}/\lambda_k)>1, \\ \sum(a_k^2+b_k^2)<\infty\quad\text{and }|f(t)|\le1\quad\text{a.e.\ on }A, \end{gather*} we can find a sequence of sets $B_1\subset B_2\subset\dots\subset[0,1]$, $\operatorname{mes}B_n\to1$, and a function $F\in L_1[0,1]$ such that $\sum(a_k\cos\lambda_kt+b_k\sin\lambda_kt)$ converges uniformly on every $B_n$ and $|f(t)|\le F(t)$ a.e. on $[0,1]$. The sequence $\{B_n\}$ and the function $F$ depends on $\{\lambda_k\}$, $A$ only. The function $F$ may be chosen in such a way that $\int_0^1\exp(\alpha F(t))\,dt<+\infty$ for some positive $\alpha$. It is interesting to observe an analogy between this theorem and similar results about Gaussian random variables.
@article{TVP_1975_20_3_a19,
     author = {B. S. Tsirel'son},
     title = {Some properties of lacunary series and {Gaussian} measures connected with uniform versions of properties of {Egoroff} and {Lusin}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {664--667},
     year = {1975},
     volume = {20},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1975_20_3_a19/}
}
TY  - JOUR
AU  - B. S. Tsirel'son
TI  - Some properties of lacunary series and Gaussian measures connected with uniform versions of properties of Egoroff and Lusin
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1975
SP  - 664
EP  - 667
VL  - 20
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_1975_20_3_a19/
LA  - ru
ID  - TVP_1975_20_3_a19
ER  - 
%0 Journal Article
%A B. S. Tsirel'son
%T Some properties of lacunary series and Gaussian measures connected with uniform versions of properties of Egoroff and Lusin
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1975
%P 664-667
%V 20
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_1975_20_3_a19/
%G ru
%F TVP_1975_20_3_a19
B. S. Tsirel'son. Some properties of lacunary series and Gaussian measures connected with uniform versions of properties of Egoroff and Lusin. Teoriâ veroâtnostej i ee primeneniâ, Tome 20 (1975) no. 3, pp. 664-667. http://geodesic.mathdoc.fr/item/TVP_1975_20_3_a19/