Some properties of lacunary series and Gaussian measures connected with uniform versions of properties of Egoroff and Lusin
Teoriâ veroâtnostej i ee primeneniâ, Tome 20 (1975) no. 3, pp. 664-667
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $A$ be a measurable subset of $[0,1]$ and $\operatorname{mes}A>0$. For any function $f$ satisfying \begin{gather*} f(t)=\sum(a_k\cos\lambda_kt+b_k\sin\lambda_kt),\quad\lambda_1,\lambda_2,\dots>0,\quad\inf(\lambda_{k+1}/\lambda_k)>1, \\ \sum(a_k^2+b_k^2)<\infty\quad\text{and }|f(t)|\le1\quad\text{a.e.\ on }A, \end{gather*} we can find a sequence of sets $B_1\subset B_2\subset\dots\subset[0,1]$, $\operatorname{mes}B_n\to1$, and a function $F\in L_1[0,1]$ such that $\sum(a_k\cos\lambda_kt+b_k\sin\lambda_kt)$ converges uniformly on every $B_n$ and $|f(t)|\le F(t)$ a.e. on $[0,1]$. The sequence $\{B_n\}$ and the function $F$ depends on $\{\lambda_k\}$, $A$ only. The function $F$ may be chosen in such a way that $\int_0^1\exp(\alpha F(t))\,dt<+\infty$ for some positive $\alpha$. It is interesting to observe an analogy between this theorem and similar results about Gaussian random variables.
@article{TVP_1975_20_3_a19,
author = {B. S. Tsirel'son},
title = {Some properties of lacunary series and {Gaussian} measures connected with uniform versions of properties of {Egoroff} and {Lusin}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {664--667},
year = {1975},
volume = {20},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1975_20_3_a19/}
}
TY - JOUR AU - B. S. Tsirel'son TI - Some properties of lacunary series and Gaussian measures connected with uniform versions of properties of Egoroff and Lusin JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1975 SP - 664 EP - 667 VL - 20 IS - 3 UR - http://geodesic.mathdoc.fr/item/TVP_1975_20_3_a19/ LA - ru ID - TVP_1975_20_3_a19 ER -
%0 Journal Article %A B. S. Tsirel'son %T Some properties of lacunary series and Gaussian measures connected with uniform versions of properties of Egoroff and Lusin %J Teoriâ veroâtnostej i ee primeneniâ %D 1975 %P 664-667 %V 20 %N 3 %U http://geodesic.mathdoc.fr/item/TVP_1975_20_3_a19/ %G ru %F TVP_1975_20_3_a19
B. S. Tsirel'son. Some properties of lacunary series and Gaussian measures connected with uniform versions of properties of Egoroff and Lusin. Teoriâ veroâtnostej i ee primeneniâ, Tome 20 (1975) no. 3, pp. 664-667. http://geodesic.mathdoc.fr/item/TVP_1975_20_3_a19/