On generalized Poisson distribution on groups
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 20 (1975) no. 3, pp. 653-656
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The paper deals with the arithmetic of distributions on groups. Let $X$ be a locally compact Abelian separable metric group, $e(F)=e^{-F(X)}\biggl(E_0+F+\frac{F^{*2}}{2!}+\dots\biggl)$ is the generalized Poisson distribution associated with a finite measure $F$, and $I_0$ is a class of distributions without indecomposable or idempotent divisors. Some results are obtained on the conditions for generalized Poisson distributions to belong or not to belong to the class $I_0$. The density (in the weak topology) of the class $I_0$ in the set of all infinitely divisible distributions is also studied. If there is an element of the infinite order in any neighbourhood of zero in the group $X$, then the class $I_0$ is shown to be dense in the set of all infinitely divisible distributions. It is also proved that for discrete groups the density takes place if and only if $X\approx Z_2$.
			
            
            
            
          
        
      @article{TVP_1975_20_3_a16,
     author = {G. M. Feldman},
     title = {On generalized {Poisson} distribution on groups},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {653--656},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1975_20_3_a16/}
}
                      
                      
                    G. M. Feldman. On generalized Poisson distribution on groups. Teoriâ veroâtnostej i ee primeneniâ, Tome 20 (1975) no. 3, pp. 653-656. http://geodesic.mathdoc.fr/item/TVP_1975_20_3_a16/
