On the rate of convergence for the multidimensiona invariance principle
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 20 (1975) no. 3, pp. 642-649
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this paper, estimates of [1], [2] are generalized under some additional restrictions for the convergence to
1) a multidimensional Wiener process,
2) a Brownian sheet, i.e. a Gaussian random field $w(t)$, $t\in[0,1]$, $q>1$:
$$
\mathbf Ew(t)=0,\quad\mathbf Ew(t)w(s)=\prod_1^q(t_i\wedge s_i).
$$
            
            
            
          
        
      @article{TVP_1975_20_3_a14,
     author = {V. V. Gorodestkii},
     title = {On the rate of convergence for the multidimensiona invariance principle},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {642--649},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1975_20_3_a14/}
}
                      
                      
                    V. V. Gorodestkii. On the rate of convergence for the multidimensiona invariance principle. Teoriâ veroâtnostej i ee primeneniâ, Tome 20 (1975) no. 3, pp. 642-649. http://geodesic.mathdoc.fr/item/TVP_1975_20_3_a14/
