Asymptotic expansions associated with some statistical estimates in the smooth case. I.~Decompositions of random variables
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 20 (1975) no. 3, pp. 488-514
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $x_1,\dots,x_n$ be a sample from a distribution $\mathbf P_\theta$ with density $f(x,\theta)$, $\theta\in\Theta$, where $\Theta$ is an open set on the real line. Let $T_n$ be a Bayessian estimate or a maximum likelihood estimate. Put
$$
\Delta_i=\frac1{\sqrt n}\sum_{j=1}^n(l_i(x_j,\theta)-\mathbf E_\theta l_i(x_1,\theta)),\quad i=1,\dots,k+1,\quad k\ge1,
$$
where
$$
l_i(x,\theta)=
\begin{cases}
\frac{\partial^i}{\partial\theta^i}\ln f(x,\theta),(x,\theta)\ne0,
\\
0,(x,\theta)=0.
\end{cases} 
$$
Supposing regularity conditions ($f(x,\,\cdot\,)$ has $k+2$ continuous derivatives, the moments $\mathbf E_\theta|l_i(\,\cdot\,\theta)|^{k+2}$ are uniformly bounded on compacts etc.), we obtain an expansion of the form
$$
\sqrt n(T_n-\theta)=\xi_0+\xi_1\frac1{\sqrt n}+\dots+\xi_{k-1}\biggl(\frac1{\sqrt n}\biggr)^{k-1}+\widetilde\xi_{k,n}\biggl(\frac1{\sqrt n}\biggr)^k,
$$
where $\xi_\theta=\Delta_1/I(\theta)$, $I(\theta)$ is Fischer's information quantity, $\xi_i$ are polynomials in $\Delta_1,\dots,\Delta_{i+1}$,
$$
\mathbf P_\theta\{|\widetilde\xi_{k,n}|>n^\delta\}=O\bigl(n^{-\frac{k-1}2-C^\delta}\bigr)
$$
for each sufficiently small $\delta>0$ uniformly on compacts. This expansion implies asymptotic expansions of $\mathbf E_\theta(\sqrt n(T_n-\theta))^m$ and $\mathbf P_\theta\{\sqrt n(T_n-\theta)$.
			
            
            
            
          
        
      @article{TVP_1975_20_3_a1,
     author = {S. I. Gusev},
     title = {Asymptotic expansions associated with some statistical estimates in the smooth case. {I.~Decompositions} of random variables},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {488--514},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1975_20_3_a1/}
}
                      
                      
                    TY - JOUR AU - S. I. Gusev TI - Asymptotic expansions associated with some statistical estimates in the smooth case. I.~Decompositions of random variables JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1975 SP - 488 EP - 514 VL - 20 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1975_20_3_a1/ LA - ru ID - TVP_1975_20_3_a1 ER -
%0 Journal Article %A S. I. Gusev %T Asymptotic expansions associated with some statistical estimates in the smooth case. I.~Decompositions of random variables %J Teoriâ veroâtnostej i ee primeneniâ %D 1975 %P 488-514 %V 20 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TVP_1975_20_3_a1/ %G ru %F TVP_1975_20_3_a1
S. I. Gusev. Asymptotic expansions associated with some statistical estimates in the smooth case. I.~Decompositions of random variables. Teoriâ veroâtnostej i ee primeneniâ, Tome 20 (1975) no. 3, pp. 488-514. http://geodesic.mathdoc.fr/item/TVP_1975_20_3_a1/
