Asymptotic expansions associated with some statistical estimates in the smooth case. I.~Decompositions of random variables
Teoriâ veroâtnostej i ee primeneniâ, Tome 20 (1975) no. 3, pp. 488-514

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $x_1,\dots,x_n$ be a sample from a distribution $\mathbf P_\theta$ with density $f(x,\theta)$, $\theta\in\Theta$, where $\Theta$ is an open set on the real line. Let $T_n$ be a Bayessian estimate or a maximum likelihood estimate. Put $$ \Delta_i=\frac1{\sqrt n}\sum_{j=1}^n(l_i(x_j,\theta)-\mathbf E_\theta l_i(x_1,\theta)),\quad i=1,\dots,k+1,\quad k\ge1, $$ where $$ l_i(x,\theta)= \begin{cases} \frac{\partial^i}{\partial\theta^i}\ln f(x,\theta),(x,\theta)\ne0, \\ 0,(x,\theta)=0. \end{cases} $$ Supposing regularity conditions ($f(x,\,\cdot\,)$ has $k+2$ continuous derivatives, the moments $\mathbf E_\theta|l_i(\,\cdot\,\theta)|^{k+2}$ are uniformly bounded on compacts etc.), we obtain an expansion of the form $$ \sqrt n(T_n-\theta)=\xi_0+\xi_1\frac1{\sqrt n}+\dots+\xi_{k-1}\biggl(\frac1{\sqrt n}\biggr)^{k-1}+\widetilde\xi_{k,n}\biggl(\frac1{\sqrt n}\biggr)^k, $$ where $\xi_\theta=\Delta_1/I(\theta)$, $I(\theta)$ is Fischer's information quantity, $\xi_i$ are polynomials in $\Delta_1,\dots,\Delta_{i+1}$, $$ \mathbf P_\theta\{|\widetilde\xi_{k,n}|>n^\delta\}=O\bigl(n^{-\frac{k-1}2-C^\delta}\bigr) $$ for each sufficiently small $\delta>0$ uniformly on compacts. This expansion implies asymptotic expansions of $\mathbf E_\theta(\sqrt n(T_n-\theta))^m$ and $\mathbf P_\theta\{\sqrt n(T_n-\theta)$.
@article{TVP_1975_20_3_a1,
     author = {S. I. Gusev},
     title = {Asymptotic expansions associated with some statistical estimates in the smooth case. {I.~Decompositions} of random variables},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {488--514},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1975_20_3_a1/}
}
TY  - JOUR
AU  - S. I. Gusev
TI  - Asymptotic expansions associated with some statistical estimates in the smooth case. I.~Decompositions of random variables
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1975
SP  - 488
EP  - 514
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1975_20_3_a1/
LA  - ru
ID  - TVP_1975_20_3_a1
ER  - 
%0 Journal Article
%A S. I. Gusev
%T Asymptotic expansions associated with some statistical estimates in the smooth case. I.~Decompositions of random variables
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1975
%P 488-514
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1975_20_3_a1/
%G ru
%F TVP_1975_20_3_a1
S. I. Gusev. Asymptotic expansions associated with some statistical estimates in the smooth case. I.~Decompositions of random variables. Teoriâ veroâtnostej i ee primeneniâ, Tome 20 (1975) no. 3, pp. 488-514. http://geodesic.mathdoc.fr/item/TVP_1975_20_3_a1/