An inequality for moments of a~random variable
Teoriâ veroâtnostej i ee primeneniâ, Tome 20 (1975) no. 2, pp. 402-403
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $X$ be a random variable. For any $r>0$, we set $\beta_r=\mathbf E|X|^r$. The following inequality is proved:
$$
\beta_r^{1/r}\le\gamma^{1/r-1/s}\beta_s^{1/s}\quad(r)
$$
where $\gamma=\mathbf P(X\ne0)$. This inequality is optimal in a certain sense.
@article{TVP_1975_20_2_a15,
author = {V. V. Petrov},
title = {An inequality for moments of a~random variable},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {402--403},
publisher = {mathdoc},
volume = {20},
number = {2},
year = {1975},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1975_20_2_a15/}
}
V. V. Petrov. An inequality for moments of a~random variable. Teoriâ veroâtnostej i ee primeneniâ, Tome 20 (1975) no. 2, pp. 402-403. http://geodesic.mathdoc.fr/item/TVP_1975_20_2_a15/