The optimal stopping of an integral with respect to the Wiener process
Teoriâ veroâtnostej i ee primeneniâ, Tome 20 (1975) no. 2, pp. 397-401
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper an optimal bound is found in the stopping problem, for the Wiener process $W_t$, $0\le t\le1$, with gain $$ V(0,x)=\sup_{0\le\tau\le1}\mathbf M\int_0^\tau(W_s+x)\,ds, $$ where $\tau$ is a Markov time with respect to the family of $\sigma$-algebras $\mathscr F_t^W=\sigma\{W_s,s\le t\}$.
@article{TVP_1975_20_2_a14,
author = {T. P. Miroshnichenko},
title = {The optimal stopping of an integral with respect to the {Wiener} process},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {397--401},
year = {1975},
volume = {20},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1975_20_2_a14/}
}
T. P. Miroshnichenko. The optimal stopping of an integral with respect to the Wiener process. Teoriâ veroâtnostej i ee primeneniâ, Tome 20 (1975) no. 2, pp. 397-401. http://geodesic.mathdoc.fr/item/TVP_1975_20_2_a14/