Two-sided estimates of Levy's metric
Teoriâ veroâtnostej i ee primeneniâ, Tome 20 (1975) no. 2, pp. 239-250

Voir la notice de l'article provenant de la source Math-Net.Ru

Along with the well-known Levy distance $L$ in the space of distribution functions, a new distance $\lambda$ in the space of characteristic functions is proposed. Upper and lower estimates of $L$, close to optimal ones, are constructed using $\lambda$. Various particular cases are considered.
@article{TVP_1975_20_2_a1,
     author = {V. M. Zolotarev and V. V. Senatov},
     title = {Two-sided estimates of {Levy's} metric},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {239--250},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1975_20_2_a1/}
}
TY  - JOUR
AU  - V. M. Zolotarev
AU  - V. V. Senatov
TI  - Two-sided estimates of Levy's metric
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1975
SP  - 239
EP  - 250
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1975_20_2_a1/
LA  - ru
ID  - TVP_1975_20_2_a1
ER  - 
%0 Journal Article
%A V. M. Zolotarev
%A V. V. Senatov
%T Two-sided estimates of Levy's metric
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1975
%P 239-250
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1975_20_2_a1/
%G ru
%F TVP_1975_20_2_a1
V. M. Zolotarev; V. V. Senatov. Two-sided estimates of Levy's metric. Teoriâ veroâtnostej i ee primeneniâ, Tome 20 (1975) no. 2, pp. 239-250. http://geodesic.mathdoc.fr/item/TVP_1975_20_2_a1/