On a~generalization of stochastic integral
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 20 (1975) no. 2, pp. 223-238
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $\xi$ be a Gaussian random variable in a separable Hilbert space $H$ and $L$ be the space of random variables $\eta$ in $H$ with $\mathbf M|\eta|^2\infty$. In the paper, the integral $\langle\eta,\xi\rangle$ is introduced and its properties are investigated. If $H$ is the space of those functions $f(x)$ on a measurable space $(X,\mathfrak B)$ for which
$$
\int f^2(x)m(dx)\infty 
$$
and $\mu$ is a Gaussian measure on $\mathfrak B$ with
$$
\mathbf M\mu(A)\mu(B)=m(A\cap B), 
$$
then the integral
$$
\langle\eta(\,\cdot\,),\mu\rangle=\int\eta(x)\mu(dx).
$$
            
            
            
          
        
      @article{TVP_1975_20_2_a0,
     author = {A. V. Skorokhod},
     title = {On a~generalization of stochastic integral},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {223--238},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1975_20_2_a0/}
}
                      
                      
                    A. V. Skorokhod. On a~generalization of stochastic integral. Teoriâ veroâtnostej i ee primeneniâ, Tome 20 (1975) no. 2, pp. 223-238. http://geodesic.mathdoc.fr/item/TVP_1975_20_2_a0/
