On a~generalization of stochastic integral
Teoriâ veroâtnostej i ee primeneniâ, Tome 20 (1975) no. 2, pp. 223-238

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\xi$ be a Gaussian random variable in a separable Hilbert space $H$ and $L$ be the space of random variables $\eta$ in $H$ with $\mathbf M|\eta|^2\infty$. In the paper, the integral $\langle\eta,\xi\rangle$ is introduced and its properties are investigated. If $H$ is the space of those functions $f(x)$ on a measurable space $(X,\mathfrak B)$ for which $$ \int f^2(x)m(dx)\infty $$ and $\mu$ is a Gaussian measure on $\mathfrak B$ with $$ \mathbf M\mu(A)\mu(B)=m(A\cap B), $$ then the integral $$ \langle\eta(\,\cdot\,),\mu\rangle=\int\eta(x)\mu(dx). $$
@article{TVP_1975_20_2_a0,
     author = {A. V. Skorokhod},
     title = {On a~generalization of stochastic integral},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {223--238},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1975_20_2_a0/}
}
TY  - JOUR
AU  - A. V. Skorokhod
TI  - On a~generalization of stochastic integral
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1975
SP  - 223
EP  - 238
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1975_20_2_a0/
LA  - ru
ID  - TVP_1975_20_2_a0
ER  - 
%0 Journal Article
%A A. V. Skorokhod
%T On a~generalization of stochastic integral
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1975
%P 223-238
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1975_20_2_a0/
%G ru
%F TVP_1975_20_2_a0
A. V. Skorokhod. On a~generalization of stochastic integral. Teoriâ veroâtnostej i ee primeneniâ, Tome 20 (1975) no. 2, pp. 223-238. http://geodesic.mathdoc.fr/item/TVP_1975_20_2_a0/