On extreme metric characteristics of a~random graph. II.~Limit distributions
Teoriâ veroâtnostej i ee primeneniâ, Tome 20 (1975) no. 1, pp. 82-98
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper continues the investigation of asymptotic statistical properties of the metric structure of the random graph $G_n(t)$ that has been started in the previous paper of the author. The random graph $G_n(t)$ may be constructed by independent elimination of edges from the complete non-oriented graph with $n$ verticies, every edge being removed with the probability $e^{-t}$.
The paper contains limit theorems for a number of metric characteristics of the random graph concerned with the diameter, the radius, the cycle index and with the conceptions of independent and dominating sets.
Let, e.g., $L=[\log_{nt}n]$ denote the integer part of $\log_{nt}n$. If $\lim\limits_{n\to\infty}(nt/\log^3n)=\infty$, $(nt)^{L+1/n}=2\log n+x+o(1)$, $x=\text{const}$, then
$$
\lim_{n\to\infty}\mathbf P(d(G_n(t))=L+1)=1-\lim\limits_{n\to\infty}\mathbf P(d(G_n(t))=L+2)=\exp\biggl(-\frac12e^{-x}\biggr),
$$
where $d(G_n(t))$ is the diameter of the random graph.
@article{TVP_1975_20_1_a6,
author = {Yu. D. Burtin},
title = {On extreme metric characteristics of a~random graph. {II.~Limit} distributions},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {82--98},
publisher = {mathdoc},
volume = {20},
number = {1},
year = {1975},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1975_20_1_a6/}
}
Yu. D. Burtin. On extreme metric characteristics of a~random graph. II.~Limit distributions. Teoriâ veroâtnostej i ee primeneniâ, Tome 20 (1975) no. 1, pp. 82-98. http://geodesic.mathdoc.fr/item/TVP_1975_20_1_a6/