On the rate of convergence of linear combinations of absolute order statistics to the normal law
Teoriâ veroâtnostej i ee primeneniâ, Tome 20 (1975) no. 1, pp. 207-215 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\{X_j\}$ ($j=1,2,\dots,n$) be a sequence of symmetric independent identically distributed random variables and $\{X_{j,n}\}$ ($j=1,2,\dots,n$) be the corresponding absolute order statistics, i.e. $|X_{1,n}|\le|X_{2,n}|\le\dots\le|X_{n,n}|$. Some results are obtained for the rate of convergence of linear combinations of the random variables $X_{j,n}$ to the normal law.
@article{TVP_1975_20_1_a25,
     author = {V. A. Egorov and V. B. Nevzorov},
     title = {On the rate of convergence of linear combinations of absolute order statistics to the normal law},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {207--215},
     year = {1975},
     volume = {20},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1975_20_1_a25/}
}
TY  - JOUR
AU  - V. A. Egorov
AU  - V. B. Nevzorov
TI  - On the rate of convergence of linear combinations of absolute order statistics to the normal law
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1975
SP  - 207
EP  - 215
VL  - 20
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_1975_20_1_a25/
LA  - ru
ID  - TVP_1975_20_1_a25
ER  - 
%0 Journal Article
%A V. A. Egorov
%A V. B. Nevzorov
%T On the rate of convergence of linear combinations of absolute order statistics to the normal law
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1975
%P 207-215
%V 20
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_1975_20_1_a25/
%G ru
%F TVP_1975_20_1_a25
V. A. Egorov; V. B. Nevzorov. On the rate of convergence of linear combinations of absolute order statistics to the normal law. Teoriâ veroâtnostej i ee primeneniâ, Tome 20 (1975) no. 1, pp. 207-215. http://geodesic.mathdoc.fr/item/TVP_1975_20_1_a25/