On a~class of branching processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 20 (1975) no. 1, pp. 182-187

Voir la notice de l'article provenant de la source Math-Net.Ru

We study $\lim\limits_{n\to\infty}\mathbf P\{z_n=0\}$ (the probability of “degeneration”) where 1) $z_n=\sum\limits_{k=1}^{[z_{n-1}/a]}\xi_k+z_{n-1}-a[z_{n-1}/a]$, $n\ge1$ 2) $a$ is a positive integer; 3) $\xi_n\ge0$ $(n\ge1)$ is a sequence of independent identically distributed integer-valued random variables. If $a=1$, the sequence $\{z_n,n\ge0\}$ is an usual Galton–Watson branching process.
@article{TVP_1975_20_1_a20,
     author = {I. I. Ezhov and A. A. Shahbazov},
     title = {On a~class of branching processes},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {182--187},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1975_20_1_a20/}
}
TY  - JOUR
AU  - I. I. Ezhov
AU  - A. A. Shahbazov
TI  - On a~class of branching processes
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1975
SP  - 182
EP  - 187
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1975_20_1_a20/
LA  - ru
ID  - TVP_1975_20_1_a20
ER  - 
%0 Journal Article
%A I. I. Ezhov
%A A. A. Shahbazov
%T On a~class of branching processes
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1975
%P 182-187
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1975_20_1_a20/
%G ru
%F TVP_1975_20_1_a20
I. I. Ezhov; A. A. Shahbazov. On a~class of branching processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 20 (1975) no. 1, pp. 182-187. http://geodesic.mathdoc.fr/item/TVP_1975_20_1_a20/