On a~class of branching processes
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 20 (1975) no. 1, pp. 182-187
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We study $\lim\limits_{n\to\infty}\mathbf P\{z_n=0\}$ (the probability of “degeneration”) where
1) $z_n=\sum\limits_{k=1}^{[z_{n-1}/a]}\xi_k+z_{n-1}-a[z_{n-1}/a]$, $n\ge1$ 2) $a$ is a positive integer;
3) $\xi_n\ge0$ $(n\ge1)$ is a sequence of independent identically distributed integer-valued random variables.
If $a=1$, the sequence $\{z_n,n\ge0\}$ is an usual Galton–Watson branching process.
			
            
            
            
          
        
      @article{TVP_1975_20_1_a20,
     author = {I. I. Ezhov and A. A. Shahbazov},
     title = {On a~class of branching processes},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {182--187},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1975_20_1_a20/}
}
                      
                      
                    I. I. Ezhov; A. A. Shahbazov. On a~class of branching processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 20 (1975) no. 1, pp. 182-187. http://geodesic.mathdoc.fr/item/TVP_1975_20_1_a20/
