Diffusion processes with unbounded drift coefficient
Teoriâ veroâtnostej i ee primeneniâ, Tome 20 (1975) no. 1, pp. 29-39

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with properties of solutions of stochastic differential equations with non-degenerate Hölder continuous diffusion coefficient and integrable to some power drift coefficient. It is proved that the obtained in [1] solution of such an equation is a Markov process, and its transition probability function has a density. A uniqueness theorem for some class of solutions is proved. An integral-differential equation for the characteristics of the solution is also obtained.
@article{TVP_1975_20_1_a2,
     author = {M. \={I}. Portenko},
     title = {Diffusion processes with unbounded drift coefficient},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {29--39},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1975_20_1_a2/}
}
TY  - JOUR
AU  - M. Ī. Portenko
TI  - Diffusion processes with unbounded drift coefficient
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1975
SP  - 29
EP  - 39
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1975_20_1_a2/
LA  - ru
ID  - TVP_1975_20_1_a2
ER  - 
%0 Journal Article
%A M. Ī. Portenko
%T Diffusion processes with unbounded drift coefficient
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1975
%P 29-39
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1975_20_1_a2/
%G ru
%F TVP_1975_20_1_a2
M. Ī. Portenko. Diffusion processes with unbounded drift coefficient. Teoriâ veroâtnostej i ee primeneniâ, Tome 20 (1975) no. 1, pp. 29-39. http://geodesic.mathdoc.fr/item/TVP_1975_20_1_a2/