An estimation of probabilites of large deviations for a critical Galton–Watson process
Teoriâ veroâtnostej i ee primeneniâ, Tome 20 (1975) no. 1, pp. 181-182
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $Z_n$, $n=0,1,\dots,$ be a critical Galton–Watson process with $Z_0=1$. An estimation of $\mathbf P(Z_n>k)$ is obtained for every $k>0$ under the assumption that $\mathbf P(Z_1>k), $\alpha>0$.
@article{TVP_1975_20_1_a19,
author = {S. V. Nagaev and N. V. Vakhrushev},
title = {An estimation of probabilites of large deviations for a~critical {Galton{\textendash}Watson} process},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {181--182},
year = {1975},
volume = {20},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1975_20_1_a19/}
}
TY - JOUR AU - S. V. Nagaev AU - N. V. Vakhrushev TI - An estimation of probabilites of large deviations for a critical Galton–Watson process JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1975 SP - 181 EP - 182 VL - 20 IS - 1 UR - http://geodesic.mathdoc.fr/item/TVP_1975_20_1_a19/ LA - ru ID - TVP_1975_20_1_a19 ER -
S. V. Nagaev; N. V. Vakhrushev. An estimation of probabilites of large deviations for a critical Galton–Watson process. Teoriâ veroâtnostej i ee primeneniâ, Tome 20 (1975) no. 1, pp. 181-182. http://geodesic.mathdoc.fr/item/TVP_1975_20_1_a19/