An estimation of probabilites of large deviations for a~critical Galton--Watson process
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 20 (1975) no. 1, pp. 181-182
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $Z_n$, $n=0,1,\dots,$ be a critical Galton–Watson process with $Z_0=1$. An estimation of $\mathbf P(Z_n>k)$ is obtained for every $k>0$ under the assumption that $\mathbf P(Z_1>k)$, $\alpha>0$.
			
            
            
            
          
        
      @article{TVP_1975_20_1_a19,
     author = {S. V. Nagaev and N. V. Vakhrushev},
     title = {An estimation of probabilites of large deviations for a~critical {Galton--Watson} process},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {181--182},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1975_20_1_a19/}
}
                      
                      
                    TY - JOUR AU - S. V. Nagaev AU - N. V. Vakhrushev TI - An estimation of probabilites of large deviations for a~critical Galton--Watson process JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1975 SP - 181 EP - 182 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1975_20_1_a19/ LA - ru ID - TVP_1975_20_1_a19 ER -
%0 Journal Article %A S. V. Nagaev %A N. V. Vakhrushev %T An estimation of probabilites of large deviations for a~critical Galton--Watson process %J Teoriâ veroâtnostej i ee primeneniâ %D 1975 %P 181-182 %V 20 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TVP_1975_20_1_a19/ %G ru %F TVP_1975_20_1_a19
S. V. Nagaev; N. V. Vakhrushev. An estimation of probabilites of large deviations for a~critical Galton--Watson process. Teoriâ veroâtnostej i ee primeneniâ, Tome 20 (1975) no. 1, pp. 181-182. http://geodesic.mathdoc.fr/item/TVP_1975_20_1_a19/
