An estimation of probabilites of large deviations for a critical Galton–Watson process
Teoriâ veroâtnostej i ee primeneniâ, Tome 20 (1975) no. 1, pp. 181-182 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $Z_n$, $n=0,1,\dots,$ be a critical Galton–Watson process with $Z_0=1$. An estimation of $\mathbf P(Z_n>k)$ is obtained for every $k>0$ under the assumption that $\mathbf P(Z_1>k), $\alpha>0$.
@article{TVP_1975_20_1_a19,
     author = {S. V. Nagaev and N. V. Vakhrushev},
     title = {An estimation of probabilites of large deviations for a~critical {Galton{\textendash}Watson} process},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {181--182},
     year = {1975},
     volume = {20},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1975_20_1_a19/}
}
TY  - JOUR
AU  - S. V. Nagaev
AU  - N. V. Vakhrushev
TI  - An estimation of probabilites of large deviations for a critical Galton–Watson process
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1975
SP  - 181
EP  - 182
VL  - 20
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_1975_20_1_a19/
LA  - ru
ID  - TVP_1975_20_1_a19
ER  - 
%0 Journal Article
%A S. V. Nagaev
%A N. V. Vakhrushev
%T An estimation of probabilites of large deviations for a critical Galton–Watson process
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1975
%P 181-182
%V 20
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_1975_20_1_a19/
%G ru
%F TVP_1975_20_1_a19
S. V. Nagaev; N. V. Vakhrushev. An estimation of probabilites of large deviations for a critical Galton–Watson process. Teoriâ veroâtnostej i ee primeneniâ, Tome 20 (1975) no. 1, pp. 181-182. http://geodesic.mathdoc.fr/item/TVP_1975_20_1_a19/