Asymptotic properties of the probability of the degeneration after time $t$ for semi-Markov processes of multiplication
Teoriâ veroâtnostej i ee primeneniâ, Tome 20 (1975) no. 1, pp. 162-170
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $Y(t)$ be the process defined by
1) $Y(0)=x$,
2) $Y(t)=x\prod\limits_{i=1}^{\nu(t)}\gamma_i-\sum\limits_{i=1}^{\nu(t)}\tau_i\gamma_i\dots\gamma_{\nu(t)}-\gamma(t)$
where $\{\tau_i\}_1^\infty$ and $\{\gamma_i\}_1^\infty$ are independent sequences of independent identically distributed positive random variables and
\begin{gather*}
\nu(t)=\sup\biggl\{n\colon\sum_{i=1}^n\tau_i\le t\biggr\},
\\
\gamma(t)=t-\sum_{i=1}^{\nu(t)}\tau_i.
\end{gather*}
Let
\begin{gather*}
\zeta_x=\inf\{t\colon Y(t)\le0\mid Y(0)=x\},
\\
f(x,t)=\mathbf P(\zeta_x\ge t).
\end{gather*} In the paper, asymptotic properties of $f(x,t)$ for $x>0$ as $t\to\infty$ are studied.
@article{TVP_1975_20_1_a15,
author = {G. Sh. Lev},
title = {Asymptotic properties of the probability of the degeneration after time $t$ for {semi-Markov} processes of multiplication},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {162--170},
publisher = {mathdoc},
volume = {20},
number = {1},
year = {1975},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1975_20_1_a15/}
}
TY - JOUR AU - G. Sh. Lev TI - Asymptotic properties of the probability of the degeneration after time $t$ for semi-Markov processes of multiplication JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1975 SP - 162 EP - 170 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1975_20_1_a15/ LA - ru ID - TVP_1975_20_1_a15 ER -
%0 Journal Article %A G. Sh. Lev %T Asymptotic properties of the probability of the degeneration after time $t$ for semi-Markov processes of multiplication %J Teoriâ veroâtnostej i ee primeneniâ %D 1975 %P 162-170 %V 20 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TVP_1975_20_1_a15/ %G ru %F TVP_1975_20_1_a15
G. Sh. Lev. Asymptotic properties of the probability of the degeneration after time $t$ for semi-Markov processes of multiplication. Teoriâ veroâtnostej i ee primeneniâ, Tome 20 (1975) no. 1, pp. 162-170. http://geodesic.mathdoc.fr/item/TVP_1975_20_1_a15/