Asymptotic properties of the probability of the degeneration after time $t$ for semi-Markov processes of multiplication
Teoriâ veroâtnostej i ee primeneniâ, Tome 20 (1975) no. 1, pp. 162-170

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $Y(t)$ be the process defined by 1) $Y(0)=x$, 2) $Y(t)=x\prod\limits_{i=1}^{\nu(t)}\gamma_i-\sum\limits_{i=1}^{\nu(t)}\tau_i\gamma_i\dots\gamma_{\nu(t)}-\gamma(t)$ where $\{\tau_i\}_1^\infty$ and $\{\gamma_i\}_1^\infty$ are independent sequences of independent identically distributed positive random variables and \begin{gather*} \nu(t)=\sup\biggl\{n\colon\sum_{i=1}^n\tau_i\le t\biggr\}, \\ \gamma(t)=t-\sum_{i=1}^{\nu(t)}\tau_i. \end{gather*} Let \begin{gather*} \zeta_x=\inf\{t\colon Y(t)\le0\mid Y(0)=x\}, \\ f(x,t)=\mathbf P(\zeta_x\ge t). \end{gather*} In the paper, asymptotic properties of $f(x,t)$ for $x>0$ as $t\to\infty$ are studied.
@article{TVP_1975_20_1_a15,
     author = {G. Sh. Lev},
     title = {Asymptotic properties of the probability of the degeneration after time $t$ for {semi-Markov} processes of multiplication},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {162--170},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1975_20_1_a15/}
}
TY  - JOUR
AU  - G. Sh. Lev
TI  - Asymptotic properties of the probability of the degeneration after time $t$ for semi-Markov processes of multiplication
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1975
SP  - 162
EP  - 170
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1975_20_1_a15/
LA  - ru
ID  - TVP_1975_20_1_a15
ER  - 
%0 Journal Article
%A G. Sh. Lev
%T Asymptotic properties of the probability of the degeneration after time $t$ for semi-Markov processes of multiplication
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1975
%P 162-170
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1975_20_1_a15/
%G ru
%F TVP_1975_20_1_a15
G. Sh. Lev. Asymptotic properties of the probability of the degeneration after time $t$ for semi-Markov processes of multiplication. Teoriâ veroâtnostej i ee primeneniâ, Tome 20 (1975) no. 1, pp. 162-170. http://geodesic.mathdoc.fr/item/TVP_1975_20_1_a15/