A~smoothing inequality for estimations of Levy--Prokhorov distance
Teoriâ veroâtnostej i ee primeneniâ, Tome 20 (1975) no. 1, pp. 3-12

Voir la notice de l'article provenant de la source Math-Net.Ru

An analogue of well known Berry–Esseen inequality for Levy–Prokhorov metric in proved.
@article{TVP_1975_20_1_a0,
     author = {V. V. Yurinskii},
     title = {A~smoothing inequality for estimations of {Levy--Prokhorov} distance},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {3--12},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1975_20_1_a0/}
}
TY  - JOUR
AU  - V. V. Yurinskii
TI  - A~smoothing inequality for estimations of Levy--Prokhorov distance
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1975
SP  - 3
EP  - 12
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1975_20_1_a0/
LA  - ru
ID  - TVP_1975_20_1_a0
ER  - 
%0 Journal Article
%A V. V. Yurinskii
%T A~smoothing inequality for estimations of Levy--Prokhorov distance
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1975
%P 3-12
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1975_20_1_a0/
%G ru
%F TVP_1975_20_1_a0
V. V. Yurinskii. A~smoothing inequality for estimations of Levy--Prokhorov distance. Teoriâ veroâtnostej i ee primeneniâ, Tome 20 (1975) no. 1, pp. 3-12. http://geodesic.mathdoc.fr/item/TVP_1975_20_1_a0/