On convergence of a~random search method in convex minimization problems
Teoriâ veroâtnostej i ee primeneniâ, Tome 19 (1974) no. 4, pp. 817-824
Voir la notice de l'article provenant de la source Math-Net.Ru
In the present paper, the minimization problem is considered for a convex function $\varphi(x)$ on a convex and closed set $X$ of the $n$-dimensional Euclidean space $E_n$, and a method is proposed for constructing a recurrent sequence $x^0,x^1,\dots,\in X$ by the formula $x^{k+1}=x^k+\beta_ks^k$, where $s^k$ is a random vector, and $\beta_k$ is determined so as to minimize $\varphi(x)$ on the straight line $x^k+\beta s^k$ $(|\beta|\infty)$.
Under sufficiently general assumptions, it is proved that
$$
\mathbf P\{\varphi(x^m)\to\min\varphi(x)\quad(x\in X,\quad m\to\infty)\}=1.
$$
In case $X=E_n$, it is proved that
$$
\lim_{m\to\infty}\mathbf P\biggl\{\varphi(x^m)-\min\varphi(x)\le\frac cm\biggr\}=1,
$$
where $c=\mathrm{const}>0$.
@article{TVP_1974_19_4_a9,
author = {V. G. Karmanov},
title = {On convergence of a~random search method in convex minimization problems},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {817--824},
publisher = {mathdoc},
volume = {19},
number = {4},
year = {1974},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1974_19_4_a9/}
}
V. G. Karmanov. On convergence of a~random search method in convex minimization problems. Teoriâ veroâtnostej i ee primeneniâ, Tome 19 (1974) no. 4, pp. 817-824. http://geodesic.mathdoc.fr/item/TVP_1974_19_4_a9/