On convergence of a~random search method in convex minimization problems
Teoriâ veroâtnostej i ee primeneniâ, Tome 19 (1974) no. 4, pp. 817-824

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, the minimization problem is considered for a convex function $\varphi(x)$ on a convex and closed set $X$ of the $n$-dimensional Euclidean space $E_n$, and a method is proposed for constructing a recurrent sequence $x^0,x^1,\dots,\in X$ by the formula $x^{k+1}=x^k+\beta_ks^k$, where $s^k$ is a random vector, and $\beta_k$ is determined so as to minimize $\varphi(x)$ on the straight line $x^k+\beta s^k$ $(|\beta|\infty)$. Under sufficiently general assumptions, it is proved that $$ \mathbf P\{\varphi(x^m)\to\min\varphi(x)\quad(x\in X,\quad m\to\infty)\}=1. $$ In case $X=E_n$, it is proved that $$ \lim_{m\to\infty}\mathbf P\biggl\{\varphi(x^m)-\min\varphi(x)\le\frac cm\biggr\}=1, $$ where $c=\mathrm{const}>0$.
@article{TVP_1974_19_4_a9,
     author = {V. G. Karmanov},
     title = {On convergence of a~random search method in convex minimization problems},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {817--824},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1974_19_4_a9/}
}
TY  - JOUR
AU  - V. G. Karmanov
TI  - On convergence of a~random search method in convex minimization problems
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1974
SP  - 817
EP  - 824
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1974_19_4_a9/
LA  - ru
ID  - TVP_1974_19_4_a9
ER  - 
%0 Journal Article
%A V. G. Karmanov
%T On convergence of a~random search method in convex minimization problems
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1974
%P 817-824
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1974_19_4_a9/
%G ru
%F TVP_1974_19_4_a9
V. G. Karmanov. On convergence of a~random search method in convex minimization problems. Teoriâ veroâtnostej i ee primeneniâ, Tome 19 (1974) no. 4, pp. 817-824. http://geodesic.mathdoc.fr/item/TVP_1974_19_4_a9/