The rate of convergence of the Smirnov--Mises statistic's distribution
Teoriâ veroâtnostej i ee primeneniâ, Tome 19 (1974) no. 4, pp. 766-786

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider $n$ independent random variables with a continuous distribution function $F(x)$ and empirical distribution function $F_n(x)$. Put $$ \omega_n^2=n\int_{-\infty}^\infty(F_n(x)-F(x))^2\,dF(x) $$ and \begin{gather*} S(z)=\lim_{n\to\infty}\mathbf P\{\omega_n^2\}, \\ \Delta_n=\sup_{-\infty\infty}|\mathbf P\{\omega^2\}-S(z)|. \end{gather*} Many papers dealt with the estimate: For each $\varepsilon>0$, there exists a $b(\varepsilon)$ such that $$ \Delta_n(\varepsilon)n^{-a+\varepsilon} $$ for $n=1,2,\dots$. The inequality (1) is proved for $a=1/10$ [7], $a=1/6$ [8], $a=1/4$ [9], $a=1/3$ [10]. In the present paper, we obtain (1) for $a=1/2$.
@article{TVP_1974_19_4_a7,
     author = {A. I. Orlov},
     title = {The rate of convergence of the {Smirnov--Mises} statistic's distribution},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {766--786},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1974_19_4_a7/}
}
TY  - JOUR
AU  - A. I. Orlov
TI  - The rate of convergence of the Smirnov--Mises statistic's distribution
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1974
SP  - 766
EP  - 786
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1974_19_4_a7/
LA  - ru
ID  - TVP_1974_19_4_a7
ER  - 
%0 Journal Article
%A A. I. Orlov
%T The rate of convergence of the Smirnov--Mises statistic's distribution
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1974
%P 766-786
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1974_19_4_a7/
%G ru
%F TVP_1974_19_4_a7
A. I. Orlov. The rate of convergence of the Smirnov--Mises statistic's distribution. Teoriâ veroâtnostej i ee primeneniâ, Tome 19 (1974) no. 4, pp. 766-786. http://geodesic.mathdoc.fr/item/TVP_1974_19_4_a7/