The rate of convergence of the Smirnov--Mises statistic's distribution
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 19 (1974) no. 4, pp. 766-786
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider $n$ independent random variables with a continuous distribution function $F(x)$ and empirical distribution function $F_n(x)$. Put
$$
\omega_n^2=n\int_{-\infty}^\infty(F_n(x)-F(x))^2\,dF(x)
$$
and
\begin{gather*}
S(z)=\lim_{n\to\infty}\mathbf P\{\omega_n^2\},
\\
\Delta_n=\sup_{-\infty\infty}|\mathbf P\{\omega^2\}-S(z)|.
\end{gather*}
Many papers dealt with the estimate: For each $\varepsilon>0$, there exists a $b(\varepsilon)$ such that
$$
\Delta_n(\varepsilon)n^{-a+\varepsilon}
$$
for $n=1,2,\dots$. 
The inequality (1) is proved for $a=1/10$ [7], $a=1/6$ [8], $a=1/4$ [9], $a=1/3$ [10].
In the present paper, we obtain (1) for $a=1/2$.
			
            
            
            
          
        
      @article{TVP_1974_19_4_a7,
     author = {A. I. Orlov},
     title = {The rate of convergence of the {Smirnov--Mises} statistic's distribution},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {766--786},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1974_19_4_a7/}
}
                      
                      
                    A. I. Orlov. The rate of convergence of the Smirnov--Mises statistic's distribution. Teoriâ veroâtnostej i ee primeneniâ, Tome 19 (1974) no. 4, pp. 766-786. http://geodesic.mathdoc.fr/item/TVP_1974_19_4_a7/
