Small deviations in the sample function space
Teoriâ veroâtnostej i ee primeneniâ, Tome 19 (1974) no. 4, pp. 755-765

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\xi_1\xi_2,\dots$ be a sequence of independent identically distributed random variables and let $$ \mathbf P(\xi_1+\dots+\xi_n(n))\Rightarrow F_\alpha(x) $$ where $F_\alpha(x)$ is a strong stable distribution function. Asymptotic properties (in the region of small deviations) of the logarithmic probability for sample paths of a random walk generated by sums of $\xi_n$ to belong to a given set in $D(0,1)$ are under investigation.
@article{TVP_1974_19_4_a6,
     author = {A. A. Mogul'skii},
     title = {Small deviations in the sample function space},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {755--765},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1974_19_4_a6/}
}
TY  - JOUR
AU  - A. A. Mogul'skii
TI  - Small deviations in the sample function space
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1974
SP  - 755
EP  - 765
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1974_19_4_a6/
LA  - ru
ID  - TVP_1974_19_4_a6
ER  - 
%0 Journal Article
%A A. A. Mogul'skii
%T Small deviations in the sample function space
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1974
%P 755-765
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1974_19_4_a6/
%G ru
%F TVP_1974_19_4_a6
A. A. Mogul'skii. Small deviations in the sample function space. Teoriâ veroâtnostej i ee primeneniâ, Tome 19 (1974) no. 4, pp. 755-765. http://geodesic.mathdoc.fr/item/TVP_1974_19_4_a6/