On extreme metric parameters of a~random graph,~I
Teoriâ veroâtnostej i ee primeneniâ, Tome 19 (1974) no. 4, pp. 740-754

Voir la notice de l'article provenant de la source Math-Net.Ru

A random graph $G_n(t)$ is considered such that the edge between every pair of its vertices exists with the probability $p=1-e^{-t}$, $0$, independently from the other edges. Let $L=[\log_{nt}n]$ be the integer part of $\log_{nt}n$. Then, uniformly in $t\ge(c_n \log n)/n$ $(\lim_{n\to\infty}c_n=\infty)$, $$ \lim_{n\to\infty}\mathbf P(L+l\le d(G_n(t))\le L+2)=1, $$ where $d(G_n(t))$ denotes the diameter of the random graph. Thus the limit distribution of the diameter may be concentrated at at most two points. Analogous propositions hold true for the radius and the cycle index of the random graph $G_n(t)$.
@article{TVP_1974_19_4_a5,
     author = {Yu. D. Burtin},
     title = {On extreme metric parameters of a~random {graph,~I}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {740--754},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1974_19_4_a5/}
}
TY  - JOUR
AU  - Yu. D. Burtin
TI  - On extreme metric parameters of a~random graph,~I
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1974
SP  - 740
EP  - 754
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1974_19_4_a5/
LA  - ru
ID  - TVP_1974_19_4_a5
ER  - 
%0 Journal Article
%A Yu. D. Burtin
%T On extreme metric parameters of a~random graph,~I
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1974
%P 740-754
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1974_19_4_a5/
%G ru
%F TVP_1974_19_4_a5
Yu. D. Burtin. On extreme metric parameters of a~random graph,~I. Teoriâ veroâtnostej i ee primeneniâ, Tome 19 (1974) no. 4, pp. 740-754. http://geodesic.mathdoc.fr/item/TVP_1974_19_4_a5/