The Chauvenet test in the classical theory of errors
Teoriâ veroâtnostej i ee primeneniâ, Tome 19 (1974) no. 4, pp. 714-723
Cet article a éte moissonné depuis la source Math-Net.Ru
The so called W. Chauvenet rule [6] for rejection of outlying observations is transformed into a test in the case of normal random variables with unknown parameters. It is shown that the distribution of the number of random variables $Y_1,\dots,Y_n$ (see section 2) which exceed some properly chosen critical value tends to a Poisson distribution as $n\to\infty$.
@article{TVP_1974_19_4_a3,
author = {L. N. Bol'shev and M. K. Ubaidullaeva},
title = {The {Chauvenet} test in the classical theory of errors},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {714--723},
year = {1974},
volume = {19},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1974_19_4_a3/}
}
L. N. Bol'shev; M. K. Ubaidullaeva. The Chauvenet test in the classical theory of errors. Teoriâ veroâtnostej i ee primeneniâ, Tome 19 (1974) no. 4, pp. 714-723. http://geodesic.mathdoc.fr/item/TVP_1974_19_4_a3/