On sequentional estimation of the location parameter for families of distributions with discontinuous densities
Teoriâ veroâtnostej i ee primeneniâ, Tome 19 (1974) no. 4, pp. 700-713
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider sequential estimation of the location parameter $\theta$ from independent observations $X_1,X_2,\dots$ with a common probability density function $f(x-\theta)$; $x,\theta\in R^1$.
Under the conditions:
(i) the only discontinuities of $f(x)$ are jumps at points $x_1,\dots,x_r$,
(ii) $\displaystyle{\int_{-\infty}^\infty|f'(x)|\,dx\infty}$,
(iii) $\displaystyle{\biggl(\sum_if^2(x_i+0)\biggr)\biggl(\sum_if^2(x_i-0)\biggr)>0}$,
we construct two invariant sequential procedures $[d,\tau]$, $\mathbf E_\theta\tau\le n$, such that
$$
\varlimsup_n\mathbf E_\theta|d_\tau-\theta|^a/\mathbf E_\theta|\widetilde t_n-\theta|^a1,\quad a>1,
$$
and $\widetilde t_n$ is the best invariant estimator of $\theta$ corresponding to the loss function $|u-\theta|^a$.
@article{TVP_1974_19_4_a2,
author = {I. A. Ibragimov and R. Z. Khas'minskii},
title = {On sequentional estimation of the location parameter for families of distributions with discontinuous densities},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {700--713},
publisher = {mathdoc},
volume = {19},
number = {4},
year = {1974},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1974_19_4_a2/}
}
TY - JOUR AU - I. A. Ibragimov AU - R. Z. Khas'minskii TI - On sequentional estimation of the location parameter for families of distributions with discontinuous densities JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1974 SP - 700 EP - 713 VL - 19 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1974_19_4_a2/ LA - ru ID - TVP_1974_19_4_a2 ER -
%0 Journal Article %A I. A. Ibragimov %A R. Z. Khas'minskii %T On sequentional estimation of the location parameter for families of distributions with discontinuous densities %J Teoriâ veroâtnostej i ee primeneniâ %D 1974 %P 700-713 %V 19 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/TVP_1974_19_4_a2/ %G ru %F TVP_1974_19_4_a2
I. A. Ibragimov; R. Z. Khas'minskii. On sequentional estimation of the location parameter for families of distributions with discontinuous densities. Teoriâ veroâtnostej i ee primeneniâ, Tome 19 (1974) no. 4, pp. 700-713. http://geodesic.mathdoc.fr/item/TVP_1974_19_4_a2/