Asymptotic independence of components of multivariate extreme order statistics
Teoriâ veroâtnostej i ee primeneniâ, Tome 19 (1974) no. 4, pp. 849-853 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $X_{ik}$ be the $(n-k+1)$-th order statistic for a sample of the $i$-th coordinates of independent random vectors $X^{(1)},\dots,X^{(n)}$ in $R^N$. We investigate necessary and sufficient conditions for asymptotic independence of $X_{ik_i}$, $i=1,\dots,N$, as $n\to\infty$ where $k_1,\dots,k_N$ are arbitrary fixed numbers.
@article{TVP_1974_19_4_a16,
     author = {V. G. Mikhailov},
     title = {Asymptotic independence of components of multivariate extreme order statistics},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {849--853},
     year = {1974},
     volume = {19},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1974_19_4_a16/}
}
TY  - JOUR
AU  - V. G. Mikhailov
TI  - Asymptotic independence of components of multivariate extreme order statistics
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1974
SP  - 849
EP  - 853
VL  - 19
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_1974_19_4_a16/
LA  - ru
ID  - TVP_1974_19_4_a16
ER  - 
%0 Journal Article
%A V. G. Mikhailov
%T Asymptotic independence of components of multivariate extreme order statistics
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1974
%P 849-853
%V 19
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_1974_19_4_a16/
%G ru
%F TVP_1974_19_4_a16
V. G. Mikhailov. Asymptotic independence of components of multivariate extreme order statistics. Teoriâ veroâtnostej i ee primeneniâ, Tome 19 (1974) no. 4, pp. 849-853. http://geodesic.mathdoc.fr/item/TVP_1974_19_4_a16/