On the asymptotic of the length of commercial traveller's path when towns are randomly allocated
Teoriâ veroâtnostej i ee primeneniâ, Tome 19 (1974) no. 4, pp. 828-831

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $n$ points in $R^k$ be independent and identically distributed. The paper is concerned with the well known problem of finding a cycle of minimal length that passes every point. Upper and lower bounds for the expectation of the length as $n\to\infty$ of this cycle are given. The bounds have equal growth rates. An algorithm is given to determine a cycle with average length between the bounds.
@article{TVP_1974_19_4_a11,
     author = {L. Yu. Morosenzkii},
     title = {On the asymptotic of the length of commercial traveller's path when towns are randomly allocated},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {828--831},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1974_19_4_a11/}
}
TY  - JOUR
AU  - L. Yu. Morosenzkii
TI  - On the asymptotic of the length of commercial traveller's path when towns are randomly allocated
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1974
SP  - 828
EP  - 831
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1974_19_4_a11/
LA  - ru
ID  - TVP_1974_19_4_a11
ER  - 
%0 Journal Article
%A L. Yu. Morosenzkii
%T On the asymptotic of the length of commercial traveller's path when towns are randomly allocated
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1974
%P 828-831
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1974_19_4_a11/
%G ru
%F TVP_1974_19_4_a11
L. Yu. Morosenzkii. On the asymptotic of the length of commercial traveller's path when towns are randomly allocated. Teoriâ veroâtnostej i ee primeneniâ, Tome 19 (1974) no. 4, pp. 828-831. http://geodesic.mathdoc.fr/item/TVP_1974_19_4_a11/