The esistence of a~martingale with given diffusion functional
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 19 (1974) no. 4, pp. 665-687
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $\mathbf R_+=[0,\infty)$ and $C$ be the space of continuous functions on $\mathbf R_+$ “starting” from zero with the topology of uniform convergence on compacts.
Let $A\colon \mathbf R_+\times C\mapsto \mathbf R_+$ be a Borel functional such that
(i) for each $\mathbf x\in C$, $A(\,\cdot\,,\mathbf x)\in C$ and is non-decreasing,
(ii) the set
$$
\{\{A(t,\mathbf x)\}_{t\in \mathbf R_+}\mid\mathbf x\in C\}
$$
is relatively compact in $C$, 
(iii) for each $t\in \mathbf R_+$, $A(t,\,\cdot\,)$ is continuous, and
(iv) for each $t\in \mathbf R_+$, $x_s=y_s$ $(0\le s\le t)$ implies
$$
A(t,\mathbf x)=A(t,y)\quad(\mathbf x=\{x_s\}_{s\in \mathbf R_+},y=\{y_s\}_{s\in \mathbf R_+}).
$$
Then we prove that (on some probability space) there exists a continuous martingale $\mathbf X$ such that its Meyer squared variation process
$$
\langle\mathbf X\rangle=A(\,\cdot\,,\mathbf X)\quad\text{a.s.}
$$ In particular, in case
$$
A(t,\mathbf x)=\int_0^ta^2(t,\mathbf x)\,ds
$$
where $a^2$ is a bounded non-anticipative function, it follows that in the conditions of D. W. Stroock and S. R. S. Varadhan [12] continuity in $(s,\mathbf x)$ may he replaced by that in $\mathbf x$ only.
			
            
            
            
          
        
      @article{TVP_1974_19_4_a0,
     author = {M. P. Ershov},
     title = {The esistence of a~martingale with given diffusion functional},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {665--687},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1974_19_4_a0/}
}
                      
                      
                    M. P. Ershov. The esistence of a~martingale with given diffusion functional. Teoriâ veroâtnostej i ee primeneniâ, Tome 19 (1974) no. 4, pp. 665-687. http://geodesic.mathdoc.fr/item/TVP_1974_19_4_a0/
