Approximate integration of stochastic differential equations
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 19 (1974) no. 3, pp. 583-588
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			For the Ito equation
$$
dX=a(t,X)\,dt+\sigma(t,X)\,dw,\quad X(t_0)=x,\quad t_0\le t\le t_0+T 
$$
($w(t)$ is a standard Wiener process) the following approximation is proposed:
\begin{gather*}
\overline X(t_0)=X(t_0),\quad\overline X(t_0+(k+1)h)=
\\
=\overline X(t_0+kh)+\overline\sigma w_{k+1}+\biggl(\overline a-\frac12\overline\sigma\frac{\overline\partial\sigma}{\partial x}\biggr)h+\frac12\overline\sigma\frac{\overline\partial\sigma}{\partial x}w_{k+1}^2
\end{gather*}
where $h=T/m$; $k=0,1,\dots,m-1$; $w_1,\dots,w_m$ are independent normal $N(0,h)$ variables. Here the stroke means that the corresponding function is computed at point $(t_0+kh,X(t_0+kh))$.
It is shown that $\mathbf M(X(t_0+T)-\overline X(t_0+T))^2=O(h^2)$.
The results are generalized to systems of stochastic differential equations. 
Possibilities of improving the accuracy of the approximation are discussed.
			
            
            
            
          
        
      @article{TVP_1974_19_3_a9,
     author = {G. N. Mil'shtein},
     title = {Approximate integration of stochastic differential equations},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {583--588},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1974_19_3_a9/}
}
                      
                      
                    G. N. Mil'shtein. Approximate integration of stochastic differential equations. Teoriâ veroâtnostej i ee primeneniâ, Tome 19 (1974) no. 3, pp. 583-588. http://geodesic.mathdoc.fr/item/TVP_1974_19_3_a9/
